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Abstract�We present a variational approach to obtain a recon-
struction of module and phase of a 3D wave �eld from intensity-
only measurements on two or more sensor planes at different
axial positions. The objective functional consists of a data �delity
term and a regularizer. The �delity term corresponds to the
likelihood function derived for the Gaussian noisy observations of
the wave �eld intensities (powers). The wave �eld reconstruction
is framed as a constrained nonlinear optimization with respect to
a 2D object wave �eld and is based on the augmented Lagrangian
technique. The main goal is to design an algorithm which is
more ef�cient and accurate than the conventional ones such as
the well-known Gerchberg-Saxton algorithms and their multiple
modi�cations. As a further development we discuss a variational
approach using a transform domain prior on phase and module
of the 2D object wave �eld.

I. INTRODUCTION

A new recursive augmented Lagrangian (AL) algorithm
is presented for reconstruction of a module and a phase of
3D wave �eld from intensity-only measurements on two or
more sensor planes at different axial positions. The wave
�eld reconstruction is formulated as a constrained nonlinear
optimization allowing to involve a prior information (simpler
the prior) on wave �eld of interest. The main intention is
to design the algorithm which is more accurate than the
conventional ones such as the well-known Gerchberg�Saxton
algorithms and their multiple modi�cations (e.g. [1]-[4]).
The considered problem is speci�ed as follows. Let u0(x)

and ur(x), r = 1; :::; l, denote complex-valued wave �eld
distributions in the object and observation (sensor) planes,
respectively, given in lateral coordinates x 2 R2. The index
r corresponds to a distance zr between the parallel object
and rth observation planes, and l is a total number of the
observation planes.
In discrete modeling all continuous variables are pixelated

with the argument x replaced by the digital one with the
following replacements of the continuous distributions by their
discrete counterparts: u0(x)! u0[k], ur(x)! ur[k].
The discrete intensity observations are given in the form

or[k] = jur[k]j2 + "r[k]; r = 1; :::; l, (1)

where the wave �eld intensity (power) is measured with an
additive random errors "r[k]. We assume that this random
noise is zero-mean Gaussian, "r[k] � N (0; �2r).
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The problem is to reconstruct pixelated complex-valued
wave �eld distributions uo[k] and ur[k] at the object and
sensor planes from the noisy data (1). This distribution (image)
restoration is known as an inverse problem. It is convenient
to denote the complex-valued wave �elds as vectors in Rn by
concatenating their column and use bold lower case characters
for these vectors. Then, the wave �eld propagation from a
diffraction (object) plane with a complex-valued distribution
u0 gives a complex-valued distribution ur in the rth image
(sensor) plane as

ur = Aru0, (2)

where Ar is a forward propagation operator from the object
to rth plane represented in the matrix form.
We consider a coherent light scenario with a paraxial wave

�eld propagation model based on the Rayleigh-Sommer�eld
equations. The operator Ar in (2) is speci�ed by discretization
of this modeling. It can be convolutional single or double
size model, angular spectrum decomposition (ASD) [5], or
recent discrete diffraction transforms in matrix (M-DDT) [6] or
frequency (F-DDT) forms [7]. These DDT models are obtained
for the Fresnel approximation of the Rayleigh-Sommer�eld
integral and enable an accurate pixel-to-pixel mapping of the
pixelated u0 to ur.
With the vector-matrix notation (2) the observation equation

(1) takes the form

or = jurj
2 + "r; r = 1; :::; l, (3)

where the modulus j � j and square j � j2 are the point-wise op-
erations applied to the elements of the corresponding vectors.

II. VARIATIONAL WAVE FIELD RECONSTRUCTION

In this article, we do not follow any variant of Gerchberg-
Saxton or Fienup's error-reduction algorithms [1], [2], [8] but
rather apply the maximum likelihood style approach. For the
Gaussian noise distribution and the observation model (3) it
results in the following criterion

J =

lX
r=1

1

2�2r
jjor � jurj

2jj22 + � � pen(u0); (4)

where the norm jj�jj22 is Euclidean and the power in jurj2 is an
element-wise operation. The �rst summand in (4) is obtained



as the main term of the minus logarithm of the Gaussian likeli-
hood function corresponding to the observation model (3), and
the second summand is the penalty (regularization) including
the prior on the object distribution u0 to be reconstructed.
The wave �eld reconstruction is formulated as the following

constrained optimization problem

û0 = argmin
u0

lX
r=1

1

2�2r
jjor � jurj

2jj22 + � � pen(u0),(5)

subject to ur = Aru0.

with the only unknown variable u0 and the distributions ur
calculated according to the forward propagation models (2).
The parameter � in (5) de�nes a balance between the

accuracy of the observation �tting and the prior. If � = 0

the solution û0 minimizes
Pl

r=1

1

2�2r
jjor � jurj2jj22 ignoring

the fact that the data or are noisy. It can result in noisy and
non-smooth û0. If � > 0 and large then the noise effects are
well suppressed but the solution û0 can be oversmoothed with
important features lost. A proper selection of � known as a
regularization parameter is an important point of the variation
formulation in inverse imaging.

III. AUGMENTED LAGRANGIAN (AL) ALGORITHM
The Augmented Lagrangian Method, introduced indepen-

dently by Hestenes [9] and Powell [10] is now classical for
the minimization of functionals in presence of linear equality
constraints.
The Augmented Lagrangian corresponding to (5) is of the

form

L(u0; furg; f�rg) = (6)
lX

r=1

1

�2r
[
1

2
jjor � jurj2jj2 +

1

r
jjur �Ar � u0jj2 + (7)

2

r
Ref��Tr (ur �Ar � u0)g] + �jju0jj22:

The Lagrangian based optimization is associated with the
saddle problem, which requires minimization on u0; furg and
maximization on the vector of the Lagrange multipliers f�rg.
The parameters r are positive.
In Augmented Lagrangian both the linear and quadratic

terms in (7) correspond to the linear constrains ur � Ar �
u0 = 0. If we keep only the quadratic terms the augmented
Lagrangian becomes the penalty criterion, which assumes that
the penalty coef�cients 1=r are large. As a rule it leads to
computational dif�culties because this criterion can be very ill-
conditioned. If we keep only the linear terms the augmented
Lagrangian becomes the standard Lagrangian. However, the
saddle-point of this standard Lagrangian is unstable. It results
in the problems with numerical solutions. The stability of the
saddle-point of the augmented Lagrangian keeping both the
linear and quadratic terms is one of the principal advantages
of this criterion.

The proposed algorithm corresponds to a recursive solution
of the problem maxf�rgminu0;furg L(u0; furg; f�rg).
It is composed from the following successive steps :

AL Algorithm (8)
1. Set t = 0 (initialization), u0;0, �r;0,
2. Repeat, t = 0; 1; :::;
3. ur;t+1=2 = Ar � u0;t;
4. ur;t+1[k] = G(or[k];ur;t+1=2[k];�r;t[k]);

5. u0;t+1 = (
lX

r=1

1

r�
2
r

A�T
r Ar + � � In�n)�1 �

lX
r=1

1

r�
2
r

A�T
r (ur;t+1 +�r;t),

6. �r;t+1 = �r;t +
1

r
� (ur;t+1 � ur;t+1=2);

7. Stop

In Step 4 G(or[k];ur;t+1=2[k];�r;t[k]) is a solution of
minur[k] L(u0;t; furg; f�r;tg). Step 5 updates the reconstruc-
tion of the object distribution u0;t+1, used in Step 3 for
prediction of the wave �eld distribution in the rth plane. Step
6 de�nes the updates of the Lagrange multipliers.

IV. SIMULATION EXPERIMENTS
We tested our algorithm in multiple experiments for am-

plitude, phase and complex-valued object wave �elds. The
experiments are produced for various distances between the
object and sensor planes as well as between the sensor planes.
The algorithm demonstrates a good convergence rate, accu-

racy and visualization for the phase and amplitude reconstruc-
tions. The algorithm performance for both noiseless and noisy
data is tested. The perfect reconstruction of the wave �eld can
be achieved for noiseless data even if the distances between
the object and sensor planes are much larger that the in-focus
ones.
The comparison is produced versus the single-beam

multiple-intensity phase reconstruction (SBMIR) algorithm
developed in [3], [4]. The AL algorithm enables a better accu-
racy and good imaging sometimes even when the alternative
technique fails.
In our simulation experiments the observations or are

always generated by F-DDT. This modeling is accurate for the
pixelated sensors and object distribution approximation [6]. It
is an appropriate choice for simulation, where we deal only
with pixelated object and sensor distributions.
For reconstruction we tested different models of Ar includ-

ing the discrete convolution and angular spectrum decompo-
sitions of a single and double size image support. Overall,
the best results are achieved using F-DDT for Ar in the AL
algorithm.
More details concerning the proposed algorithm, implemen-

tation and experiments can be found in [11].

V. CONCLUSION
This section concerns our further research.



A. A priory on phase and module of the object distribution.

Often wave �eld distributions (imaging) allow sparse rep-
resentations in transformed domains. In our days this sparsity
is characterized by l0-norm in the spectrum domain, i.e. as a
number of active non-zero elements in the spectrum domain.
If we use the notation 
 2 RM for the corresponding
vector-spectrum and T for the spectrum matrix transform,

 = T � u0 the object distribution reconstruction problem (5)
is replaced by a more complex one


̂ = argmin


J(u0), (9)

subject to uzr = Ar � u0, u0 = T �
, (10)

J(u0) =
lX

r=1

1

2�2r
jjor � jurj2jj2 + � � pen(
); (11)

pen(
) = jj
jj0, (12)

where the optimization is produced in spectrum domain over

.
This setting includes an automatics selection of adaptive

models for u0, in particular ef�cient if the overcomplete
transform is used withM larger (much larger) than the number
of elements of u0.
The spectrum and the penalty can speci�ed to be different

for phase and module object distributions. In order to solve (9)
we use a specially developed splitting augmented Lagrangian
(SAL) algorithm where extra variables are introduced for split-
ting the spectrum and signal domain variables. For examples of
this type of algorithms we refer to the work on split Bregman
iterations [12].
A proper selection of the spectrum domain and the adap-

tivity of the algorithm enable potentially much better perfor-
mance as it can be achieved using the AL algorithm, where
the priory information on u0 can be given only in the signal
domain.

B. Backward propagation by variational inverse

The variational problems (5) and (9) are based on the
forward propagation modeling only and do not use conven-
tional backward propagation. The back propagation or inverse
imaging is found as a solution of these variational problems
enabling an optimal correspondence between the observations
and the prediction for the observation planes obtained from
the solution found for u0. The priory on the object distrib-
ution is automatically included in this variational backward
propagation.
The variational inverse imaging can be used with any kind

of forward propagation models, in particular, with the models
found experimentally.

C. Generalizations and further developments

The considered variational setting can be generalized for
various optical settings, for design of the object distribution
giving desirable wave �eld distributions, for advance imaging
techniques such as super-resolution and compressive sensing.
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