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Abstract

In this paper, we present a novel iterative phase-retrieval algorithm using
a sparse representation of the object amplitude and phase. Sparse modeling
is one of the efficient techniques for imaging that allows recovering lost in-
formation on the object distribution. The algorithm is derived in terms of
constrained maximum likelihood assuming that the wave field reconstruction
is performed from a number of noisy intensity-only observations with a zero-
mean additive Gaussian noise. The developed algorithm enables the optimal
solution for the object distribution reconstruction, and sparse regularization
results in advanced reconstruction accuracy. Numerical simulations demon-
strate significant enhancement of imaging.

1 Introduction

The conventional sensors detect only the intensity of the light, but the phase is
systematically lost in measurements. Phase retrieval is a problem of the phase
recovering using a number of intensity observations and some prior on the object.
The phase carries important information about the object shape what is necessary
for a 3D object imaging and exploited in many areas such as microscopy, astronomy,
etc. Moreover, phase-retrieval techniques are often simpler, cheaper and more robust
comparing with interferometric ones.

In 1982 Fienup systematize earlier works and introduced some, for now classical,
iterative phase-retrieval algorithms [1]: error-reduction, gradient search and input-
output methods. Many phase-retrieval methods are developed based on this pioneer
work: the estimated magnitudes at the measurement planes are iteratively replaced
by ones obtained from the intensity observations. These algorithms differ by the
representation of an object wave field.



Contrary to that, Misell’s variation of the phase-retieval algorithm [2] operates
with data at the measurement planes only, and no connection with the object is
used. Recently such successive phase recovering from data at non-focal planes only
are shown to be very effective. One of the most efficient successive algorithms is
the iterative method known as single-beam multiple-intensity phase reconstruction
(SBMIR) [3].

We are looking for an optimal wave field reconstruction from a number of in-
tensity observations, and the object estimation is formulated in terms of variational
constrained maximum likelihood (ML) approach. The spatial image resolution of
the conventional phase-retrieval techniques is limited due to diffraction, what can be
the main source of artifacts and image degradation. In order to enhance the imag-
ing quality and recover lost information, in this work we use the newly-developed
compressive sensing technique for the variational image reconstruction. The object
is assumed to be sparse, and its amplitude and phase are separately decomposed
using very specific basis functions called as BM3D-frames [4]. The proposed phase-
retrieval algorithm is derived as a solution of the ML optimization problem using
the BM3D-frame based sparse approximation of the object distribution.

2 Wave field propagation model

We consider a multi-plane wave field reconstruction scenario: a planar laser beam
illuminates an object, and the result of the wave field propagation is detected on
a sensor at different distances from the object z;, at various measurement (sensor)
planes parallel to the object plane. Here z; = 2 + (I — 1) - A,, l =1, ...L, where z
is the distance from the object to the first measurement plane, A, is the distance
between the measurement planes, and L is a number these planes. We assume that
the wave field distributions at the object and sensor planes are pixel-wise invariant.
In such a discrete-to-discrete model, the forward wave field propagation from the
object to the [—th sensor plane can be presented as follows:

u, =A,-uy,l=1,..L, (1)

where ug and u,, are C"*! vectors, constructed by columns concatenating of the 2D
discrete complex-valued distributions (/N x M matrices) at the object and sensor
planes, respectively. A; € C™*™ is a discrete forward propagation operator, n =
N-M. We consider the paraxial approximation of the wave field propagation defined
by the Rayleigh-Sommerfield integral. Depending of the used discretization model
of this integral, the operators A; in (1) can be e.g. angular spectrum decomposition
[5] or the discrete diffraction transform in the matrix (M-DDT, [6]) or the Fourier
transform domains (F-DDT, [7]). In our numerical experiments, we use DDT models
enabling the exact pixel-to-pixel mapping of uy to u,, .

According to the used vector-matrix notation, the observation model with the
additive Gaussian noise at the sensor planes takes the form:

0, = |11zl|2 + Efl,l = 1, ..L (2)



Here we assume for simplicity that the resulting noise is zero-mean Gaussian
El[k?] ~ N(O, Ul2)

Let us assume that the object amplitude a; € R" and phase ¢, € R" can be
separately approximated by a small numbers of non-zero elements: 6, in a basis
¥, for the object amplitude and 6, in a basis ¥, for the object phase. uy =
ap o exp(j - ) and “o” denotes the Hadamard product. Thus, the object wave
field is reconstructed from the noisy intensity data o; , and the object amplitude
and phase are processed via sparse decomposing in fixed data dependent bases. It
is found that, in contrast to classical orthonormal bases, overcomplete frame based
modeling is a much more efficient for imaging [8] and results in a better wave field
reconstruction accuracy.

3 Sparse modeling of object amplitude and phase

The sparse approximation of the object amplitude and phase can be given in the
synthesis form as ag = ¥, - 0,, ¢, = ¥, - 0, or in the analysis form as 0, =
®,-ay, 0, = P, - ¢,. These priori unknown bases are selected from given sets of
potential ones, and the vectors 6, , 8, € R™ can be considered as spectra (m > n)
in a parametric data adaptive approximation. The sparsity of approximation is
characterized by either the [y norm ||@||y defined as a number of non-zero components
of the vector @ or the [; norm ||0||; =), |0|. In this work we use /; norm recalling
that results obtained by [y or /; norms are shown to be closed to each other [9].

In this paper we apply the newly developed BM3D-frames [4] for a sparse mod-
eling of both the object amplitude and phase: we achieve the reduction of the
BM3D-frame domain by thresholding as a solution of the optimization problem.

4 Sparse splitting augmented Lagrangian (SSAL)
algorithm

According to the maximum likelihood approach, the reconstruction of the whole
wave field is performed by minimization of the following criterion:

L
1
J=) 27%“0; — [ [Pl15 + 7o [18ally, + 74 - 110,11, (3)
=1

subject to (1), ag =¥, -0,, py =¥, -0,, 0, =P, ay, 0, =P, - p,.

The quadratic fidelity term in (3) appears due to our assumption that the obser-
vation noise is Gaussian. The following two terms define the sparse regularization
in the spectral domain, where the positive parameters 7, and 7, define a balance
between the fit of observations, the smoothness of the wave field reconstruction and
the complexity of the used model. In our work we are looking for a solution of (3)
using the augmented Lagrangian technique as in [10]. Let us replace the constrained
minimization by an unconstrained one changing the constraints for sparse modeling



by the quadratic penalties with positive weights. Then, the criterion (3) can be
divided as J(ug, {u,}, {Ai},0,,0,) = Ji(uo, {u,, }, {A;}, vo) + J2(uo, 0., 0,,), where
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The synthesis constraints in (4) are given in the complex-valued form as the
approximation of ug by vo = ¥, -0, 0 exp(j- ¥, -0,). In Eq. (5) 7, and 7,
are positive penalty parameters introduced for the analysis constraints and ¢ is the
penalty parameter for the synthesis constraint.

A typical Lagrangian based optimization assumes minimization of the criterion J
with respect to ug, {u,, }, 8,, 0, and its maximization on the vectors of the Lagrange
multipliers {A;} € C™1. (-)# stands in Eq. (4) for the Hermitian conjugate, and v,
are positive penalty coefficients. Instead of optimization of J; + J; we use a partial
alternative minimization of these two summands: J; on ug, performing inversion
of the forward wave field propagation, and J, on 8,, 0, performing filtering of the
object amplitude and phase in a spectral domain. The splitting variable v, separates
minimizations on ug and 8,, 8. Since the minimization of J; on uy in general results
in increasing of J;, and vice versa, we are looking for a fixed-point (ug, 8;,,07) as a
compromise in such a selfish behavior. Then, a complex-valued object wave field is
reconstructed using the inverse imaging algorithm with decoupling of inversion and
filtering of both the amplitude and phase [4]:

(6;,0;) = arg pnin J2(ag, ¢35, 04, 0,) (6)
vp = W0, 0erp(j-¥,-0))
u, = arg min maxJi(ug,{u,}, {A;}, v}
= arg min max A (u, (. (A V)

In [10] we show that the object wave field estimate can be easily achieved if
the optimization variables (here ug, {u,,}, {A;}) are partioned into several blocks
according to their role. Then, the resulting augmented Lagrangian function J;
is minimized with respect to each block by fixing all other blocks at each inner
iteration. The criterion .JJ, can be divided into two parts with respect to the object
amplitude and phase. From the minimum condition for .J; and .J; in (6) we arrive
at the proposed iterative algorithm.

0. Initialization for t = 0: u) = aj o exp(j - y), {AY}, ®,, ®,, ¥,, ¥,



Repeat for t = 1,2... (7)
1. 6" = Shioy, (Pg - ah ), 9:; = %hw%(tﬁw b
v =W, 0 0exp(j-¥,-0,)

. uiflﬂ =A-up, l=1,..L
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The initialization for ¢ = 0 concerns the object distribution (e.g. ud[k] = 1/2),
Lagrangian multipliers (e.g. {AY[k]} = 0), and the BM3D-frame based bases for
synthesis and analysis for both the object amplitude and phase.

The updates of {u’"'} is realized by fitting of {ul"'/*} to the observations o,
by the operator G = argming,, } /1 (see the definition in [10]). We call this proce-
dure of optimization the sparse splitting augmented Lagrangian (SSAL). The main
difference with the original AL algorithm originated in [10] is that the wave field
estimates at the object and sensor planes are calculated using filtering in a BM3D

spectral domain. The used algorithm of BM3D filter can be divided into three steps:

1. Analysis. Highly correlated image blocks are distinguish and stacked together
to form a 3D data array, which is decorrelated by an invertible 3D transform
(calculation of spectra 65, ).

2. Processing. 3D group spectra obtained from 3D data array separately for the
object amplitude and phase are filtered by thresholding (the result of Step 1
in the proposed SSAL algorithm).

3. Synthesis. Filtered spectra are inverted providing estimates for each block
in a group. These blocks are returned to their original positions, then the
final image estimate is aggregated by weighted averaging over all block-wise
estimates (Step 2).

It is easy to see that depending on the chosen [; or [y norms we use ‘soft’ or
‘hard’ thresolding denoted as [4], [8]:

sign(u) - (|lu| = 7)4, if L, =1, ®)
uoI(jul > 27), if I, = o

For different norms [, in Eq. (8) we consider the optimization problem in the
form £|(6 — u||3 + 7 - ||6]|;, — min.

Taking into account the additive nature of the norms this problem can be solved
independently for each component of 8, , © = 1,..m. If [, = [; the minimum
condition leads to |0;| = |u;| + 7 - sign(6;).

6 =Sh,(u) = {



The solution for [, = [y can be easily found using |6;|o = 1(6; # 0). The resulting
non-convex function 160;—w;|? + 7 - 1(0; # 0) has two minima equal to 7 in 8; = 0
and 0,= u; if u; = V/27. For all u; < v/27 the minimum of this function is in 8; = 0.

Note that the threshold in the algorithm (7) is 7,7, for the BM3D spectrum of
the object amplitude and 7,7, for the phase spectrum.

5 Numerical experiments

In our simulation experiments, we compare three algorithms: the recent AL method
from [10], the successive SBM IR from [3] and the proposed SSAL algorithm (7).
Here we consider a phase-only object distributions given as ug = 1-exp(j-m(w—1/2)),
where 0.1 < w < 1 is the binary test-images chessboard (128 x 128). {u,,} and uy
are pixilated with square pixels A x A, A = 6.7um with 100% fill factors. The
presented results are given for L = 5 noisy observations with ¢, = ¢ = 0.05 for all [,
and the following setup parameters: wavelength A = 532nm, A, = 2mm, 2 = 2- zy,
zy is “in-focus” distance [11]. Note that the crucial point of the SSAL wave field
reconstruction is its initial guess for u). We are looking for this initial object estimate
by AL. It is found that the best reconstruction accuracy can be achieved for a
compromise between overall sharpness of the object reconstruction and smoothness

-]

: ¥

i

=

i
g

T4 3=

=

LN E
]

L

.
5l
fl smm il el el S e

T
P

'n..i

i’ ki
»
b |
E:
3
%
E

=) i

Figure 1: Fragments of the reconstructed (top image) amplitude and (bot-
tom) phase, obtained by (a) SBMIR, RMSE(ay)=0.35, RMSE(p,)=0.58;
(b) AL, RMSE(ag)=0.23, RMSE(yp,)=0.26 and (c) SSAL, RMSE(ay)=0.026,
RMSE(,)=0.036.
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Figure 2: Cross-sections of the reconstructed (top image) object amplitude and
(bottom) phase.

of its details. Thus, here we use 50 iterations for the object initialization by AL and
50 iterations of the SSAL algorithm.

In Fig. 1, the reconstructed object amplitude and phase are shown after 100
iterations of the considering phase-retrieval algorithms. The visual advantage of the
proposed SSAL algorithm is obvious. The reconstruction accuracy is given in root-
mean-square error (RM SE) values for the whole image. The corresponding cross-
sections are illustrated in Fig. 2 with the best performance obtained by SSAL: this
results are very close to the true value, while the AL and SBM IR reconstructions
are blurred and have a quite large deviation.

Numerical experiments demonstrate a significant better reconstruction quality
(via RMSE) of SSAL: here it is approximately ten times better with respect to
AL and more for SBMIR.



6 Conclusions

The proposed ML-like phase-retrieval technique takes into account the Gaussian
noise distribution and prior information on the object: the developed algorithm can
be treated as a further development of the recent AL [10]. It is shown, that the
object sparse regularization via BM3D-frame based filtering dramatically improves
the reconstruction accuracy and imaging.

The Matlab code used for numerical simulations and more materials are available
on our web page http://www.cs.tut.fi/ “lasip/DDT/
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