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Abstract
We reconstruct a spatially distributed wave �eld from a number of ob-

servations, obtained in di¤erent sensor planes, parallel to the object plane.
The proposed wave �eld reconstruction procedure can be treated as a multi-
ple plane iterative Gerchberg-Saxton algorithm [1]. We estimate a complex-
valued object distribution using module observations from the sensor planes.
Because of �nite size of sensors the di¤raction transform which de�nes the
wave �eld propagation can be ill-posed, and the regularization is an impor-
tant component of the inverse. The algorithm is studied by numerical exper-
iments performed for amplitude and phase object distributions. It is shown
that the proposed method allows reconstructing the whole wave �elds using
various wave �eld propagation models for di¤erent setup parameters. It is
shown that the usage of the prior information about the type of the object
distribution yield to the clear advantage in the reconstruction accuracy of the
proposed parallel algorithm comparing with the successive iterative method
[2].

1 Introduction

The reconstruction of the whole wave �eld (both amplitude and phase) is an impor-
tant problem utilized in di¤erent technical and scienti�c applications, e.g. for 3D
imaging or nondestructive testing. The phase of radiation scattered from an object
carries important information about an object surface and its properties. The phase
can not be measured directly, thus we recover the phase from a number of inten-
sity measurements. There are two groups of the wave �eld reconstruction methods:
interferometric one with a reference beam and methods without a reference beam
(phase retrieval). The phase retrieval techniques are much more reliable and techni-
cally simpler than the interferometric ones, in particular, because of the simplicity
of the optical setup. Furthermore, the phase retrieval approach is more robust with
respect to various disturbances (e.g. vibrations).



Figure 1: Multiple plane wave �eld reconstruction scenario: u0[k] and uzl [k] are
discrete complex amplitudes in the object and measurement planes respectively,
l = 1; ::::; L:

Mathematically and computationally the phase retrieval from the module mea-
surements is not a trivial problem. In this paper we study a novel technique based
on the parallel usage of the observations from all sensor planes simultaneously for
the reconstruction of the 2D wave �eld in the object plane and 3D wave �eld dis-
tributions in the observation planes. The planar laser beam scattered by an object
propagates through the space. The intensity of the resulting wave �eld distribution
is registered by digital sensors in the sensor planes parallel to the object plane (see
Fig.1).
The Gerchberg-Saxton-Fienup iterative algorithm ([1], [3]) is the most popular

phase recovery method, based on the essential usage of a prior knowledge on the
object size and object type (phase or amplitude modulation of the wave �eld). The
idea is that the phases missing in observations are recovered iteratively applying
the magnitude constraints in object and sensor planes. This technique has been
studied, modi�ed and developed in a �ow of publications (see [4]) and the further
generalizations of this technique have resulted in various modi�cations for di¤erent
application areas. For instance, in [5] a multi-plane modi�cation of the algorithm is
developed in order to obtain a desired wave �eld distributions in di¤erent planes.
In this work we consider the wave �eld distribution in the object plane as the

only unknown of the problem which one-to-one de�nes the wave �elds for sensor
planes. In this approach prior information on the object such as the size and modu-
lation type is used in order to improve the accuracy of the wave �eld reconstruction.
The main contribution of this paper concerns the developments of the whole wave
�eld phase retrieval algorithm for di¤erent wave �eld propagation methods (e.g. the
discrete di¤raction transform (DDT ) [6], [7], or the conventional angular spectrum
decomposition, ASD) and numerical comparative analysis of the proposed parallel
phase retrieval algorithm versus the successive method presented in [2]. The in�u-
ence of the prior information in the object plane on the wave �eld reconstruction
accuracy is analyzed. We consider the reconstruction of the object wave �elds with



amplitude (AM) or phase (PM) modulations. It is shown that the spatially adap-
tive regularization used in the inverse imaging results in the further improvement of
the algorithm performance.

2 Wave �eld propagation model

Let u0(x) and uzl(x), x 2 R2; l = 1; :::; L, denote the complex-valued wave �eld
distributions in the object and sensor planes, respectively. zl = z1 + (l � 1) � �z

indicates a distance between the parallel object and l � th sensor planes, �z is a
distance between two sensor planes, z1 is a distance from the object to the �rst
measurement plane and L is a number of the observation planes (sensor positions).
We assume that the wave �eld distributions in the object and sensor planes are pixel-
wise invariant. This assumption is natural for all sort of digital sensors and used
as a pixel-wise approximation for the object plane. Because of this pixelation we
obtain the sampled version of the continuous wave �eld distributions: u0(x)! u0[k],
uzl(x) ! uzl [k], where k = (kx; ky) 2 Z2 is a two dimensional vector with integer
components. In Fig.1 this multi-plane phase retrieval model is presented.
For the pixel-wise object distribution and the discrete sensor the link between

u0[k] = ju0[k]j � exp(j � �0[k]) and uzl [k] = juzl [k]j � exp(j � �zl [k]) is given in the
frequency domain as

Uzl [f ] = Azl;zo [f ] � Uo[f ], (1)

where f = (fx; fy) 2 Z2 is the spatial frequency, Uzl [f ] and Uo[f ] are calculated as
the 2D Fourier transform of uo[k] and uzl [k] using FFT .
The ASD discrete transfer function is given analytically as [8]:

Azl;zo [f ] = exp(j2�
zl
�
�

s
1� �2

N2
l ��2

jjf jj22); (2)

where jjf jj22 < (N2
l � �2)=(�2); � is the wavelength, � is the pixel size (we assume

that the pixels are square ���) and Nl�Nl is the size (in pixels) of the wave �eld
distribution in the l � th observation plane.
In DDT (rather in F � DDT , [6]) the calculation is performed for extended

double size versions of uo[k] and uzl [k] zero padded to the double size of the images.
The frequency domain operation is produced in F �DDT for the double size images
in order to the DDT forward propagation be accurate. This sort of double size
calculations are typical for accurate convolutional techniques (e.g. [9]).

3 Phase retrieval algorithm

Let us assume for a moment that the complex-valued uzl are known. Then the
reconstruction of uo can be produced in the frequency domain according to the
following optimization formulation

Ûo[f ] = argmin
Uo[f ]

J; J = jj
LX
l=1

Uzl [f ]� Azl;zo [f ] � Uo[f ]jj22 + �2jjUo[f ]jj22, (3)



Here jjUo[f ]jj22 =
P

f jUo[f ]j2 and �2 is a regularization parameter. The routine
calculations give the estimate of Uo[f ] in the form

Ûo[f ] =
1PL

l=1 jAzl;zo [f ]j2 + �2

LX
l=1

A�zl;zo [f ]Uzl [f ]; (4)

where ���stands for the complex-conjugate variable. The criterion in (3) corresponds
to the standard Tikhonov�s quadratic regularization of the ill-posed inverse problems
[10]. We use the formula (4) in order to derive the algorithm for the case when only
magnitude/module data are available instead of the complex-valued one.
Let the observations in the sensor planes be given as

ozl [k] = juzl [k]j+ "l[k]; (5)

where "l[k] � N (0; �2) are measurement noises. Substitute these noisy observations
in (3) instead of uzl [k], then we arrive at the following iterative algorithm, which
allows reconstructing both the object and observation wave �elds:

û
(t)
0 [k] =

LX
l=1

FFT �1f
A�zl;zo [f ] � FFT fv

(t�1)
l [k]gPL
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û(t)zl [k] = FFT
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0 [k]gg; (7)
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[k]); t = 1; 2::: (9)

The expressions (6)-(9) de�ne the iterative multiple plane parallel algorithm,
which can be treated as a generalization of the Gerchberg-Saxton algorithm. The
equation (6) of this algorithm de�ne the object wave �eld estimate, obtained from
estimates in the sensor planes (backward propagation). The complex-valued û(t)o [k]
can be corrected according to a prior information about the object distribution.
The estimates in the sensor planes are exploited in parallel for the calculation of the
object estimate. The estimate in the object plane is used for prediction (forward
propagation) in the sensor planes (see, Eq. (7)). The modules of these predictions
are corrected (Eq. (9)) by the given observations.
In particular, for F � DDT with double size extended images and kernels the

formula ozl [k] � Il[k] + juzl [k]j � (1� Il[k]) replaces the extended version of the magni-
tude uzl [k] by the observations (5) in the middle part of the double size image and
preserves the magnitudes uzl [k] calculated for the outside of this middle part. Here
Il[k] is the indicator of the image area in the l-th observation plane, i.e. Il[k] = 1
for the image area and equal to 0 otherwise. In this case we name this phase re-
trieval algorithm Multiple Plane Frequency DDT (MF � DDT ). For the single
size calculations Il[k] is always equal to 1 for all l.
The object estimate for the ASD frequency domain models becomes simpler

because jAzl;zo [f ]j2 = 1, A�zl;zo [f ] = A�zl;zo [f ], thus we do not need regularization.
The object estimate can be found in the form



û
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L
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L

X
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[f ] � FFT fv(t�1)l [k]gg (10)

In the single-beam multiple-intensity phase reconstruction (SBMIR) algorithm
[2] the phase reconstruction is produced by the wave �eld propagation modeling
from one sensor plane to the next following one with a circle loop going from the last
sensor plane to the �rst one. The study of this algorithm demonstrates the e¢ ciency
of this technique in simulations and for real experimental data [11]. The proposed
technique (6)-(9) is essentially di¤erent from SBMIR by its structure because the
observations from all planes are processed in parallel while in SBMIR a plane-to-
plane phase reconstruction is used. The use of the object distribution as the only
estimated variable enables the parallel algorithm to involve prior information on
the type of the object distribution (the amplitude or phase distribution of uo[k]) as
well as the object size. This additional information has a signi�cant in�uence on
the reconstruction accuracy. Numerical experiments con�rm the advantage of this
parallel processing, when the prior information (that the object is of the amplitude
or phase type) is used in the algorithm. We assume that the size of the reconstructed
object is known.
Moreover, a further development of the proposed approach is produced by using

a varying spatially adaptive regularization instead of the simple Tikhonov�s one.
It is shown in [12] that this sort of regularization can be implemented as spatially
adaptive �ltering. In the developed modi�cation of the proposed phase retrieval
algorithm the phase and the magnitude of each iterative estimate û(t)o [k] are subjects
of special �ltering. For this �ltering we use the powerful adaptive BM3D algorithm
[13]. Simulations demonstrate an essential improvement in the object wave �eld
reconstruction.

4 Numerical experiments

The numerical experiments are performed for amplitude and phase object dis-
tributions with the test-image lena. The images are square N � N , N = 256
with the square pixels � � � of the same size in the object and sensor planes,
� = 6:7�m, the wavelength � = 632:8 nm. The "in-focus" distance is calculated
as zf = N�2=� = 18:16 mm (see [7]). It is assumed that the additive noise in (5)
is zero-mean Gaussian with � = 0:01. The number of measurement planes varies:
L = [1; 20]. The results are shown for 100 iterations of the algorithm. The dis-
tance between the measurement planes is �xed: �z = 0:5mm. The in�uence of the
quantization of the observations on the wave �eld reconstruction accuracy is out of
the scope in this work, and we assume that a high precision data from a sensor is
given. The wave �eld reconstruction accuracy is given via the root mean square
error (RMSE).
In Fig. 2 we present the reconstruction of the data obtained with the DDT

assuming that this forward wave �eld propagation model yields to accurate results
because it is precise and aliasing free for pixelated wave �eld distributions in the



Figure 2: The accuracy (RMSE) of the object phase reconstruction by the MF �
DDT and ASD algorithms.

sensor and object. The accuracy of the phase reconstructions in the object plane is
shown for di¤erent distances z1. The accuracy of MF �DDT is always better than
that for the ASD algorithm (obtained according to (10)) with the relative improve-
ment in RMSE values about 30% �50%. The adaptive regularization embedded in
the MF � DDT algorithm (BM3D �ltering) further improves the reconstruction
quality. It is shown that there is an essential improvement generally for small L
(say, L = 1; 2).
For the fair comparison of the proposed parallel algorithm with the original

SBMIR the following experiments are made with the observation data obtained
using the ASD method.
Imaging of the reconstructed amplitude jû0j and phase �̂0 distributions in the

object plane is shown in Fig.3. These images correspond to the amplitude (AM) and
phase modulation (PM) of the object distribution. We demonstrate the in�uence
of the knowledge about the object type apriori on the quality of imaging. Here
we show the reconstruction for the amplitude (Fig.3 (a)) and phase (Fig.3 (b))
object distributions provided that it is known in advance the corresponding object
modulation. If the type of the distribution is unknown, a complex-valued object
distribution is estimated. We show the amplitude and phase estimates for the AM
in Fig.3 (c) and (d), and for PM in Fig.3 (e) and (f) respectively.
In Fig.4 we compare the object wave �eld reconstruction accuracy (for AM),

obtained by the proposed algorithm (6)-(9) and by the successive SBMIR. The
original successive iterative process of SBMIR has no direct connection to the
object plane, and it is not able to use the prior information on its distribution (see
"SBMIR; complex "). We have modi�ed this algorithm and included the object
plane in this successive recursive procedure. The corresponding result is shown
as "SBMIR; abs". The curves in Fig.4 show that the proposed algorithm gives a
better accuracy for the amplitude object, when the type of the object distribution is
used for the estimation ("ASD; abs"). If we do not use the prior information on the



Figure 3: The object wave �eld reconstruction, L = 10, z1 = 1:5 � zf : (a) jû0j, AM ,
RMSE = 0:01, (b) �̂0, PM , RMSE = 0:1, (c) jû0j, AM , RMSE = 0:04, (d) �̂0,
AM , RMSE = 0:192, (e) jû0j, PM , RMSE = 0:14, (f) �̂0, PM , RMSE = 0:172.

object distribution and estimate the object distribution as a complex-valued one, the
SBMIR algorithm gives a better accuracy than the proposed algorithm. In this case
the result for the parallel algorithm is marked as "ASD; complex ". The SBMIR
algorithm converges very quickly and the increase of the number of iterations does
not yield to a signi�cant improvement in accuracy. The accuracy value for the
proposed method increases monotonically, but slower than for SBMIR. For large
number of iterations and L the proposed algorithm demonstrates better accuracy.
The reconstruction accuracy of the wave �eld distributions in all measurement

planes is considered for the phase and amplitude separately. It is found that a
larger number of the observation planes L results in monotonically better accuracy
for both the object and sensor planes. This improvement is valuable for small L
(say, L = 2; 3) and not essential for larger L: The reconstruction quality increase
rapidly for L < 10 both for PM and AM , with a signi�cant improvement achieved
for L < 7 (for example, if we take L = 5 instead of L = 2 the accuracy in RMSE
values will increase by approximately 50% or more). For larger L (we increase the
number of planes from L = 10 to L = 20) this improvement is much smaller: by
approximately 30% for the object wave �eld and by less than 25% for the mean value
ofRMSE for the module or phase reconstruction over all measurement planes. Note,
that the results for di¤erent observation planes are quite close with the standard
deviation from the mean values not more than 6%. For larger � (say, � = 0:05) the
improvement of wave �eld reconstruction for larger L is also not so signi�cant for
larger L (a slope of the RMSE curves decreases).
In the reconstruction of the whole complex-valued object wave �eld the concor-

dance of the phase estimates �̂zl [k] (see Eq. (8)) is of very importance, because the
phase component of the �nal object estimate (the sum in (6)) should have close



Figure 4: The RMSE reconstruction accuracy of the object magnitude versus the
number of planes L, AM , z1 = 1:5 � zf : the proposed parallel algorithm versus
SBMIR.

values. The wrapping e¤ect could lead to a quite strong damage for the parallel al-
gorithm, poor quality of reconstruction and imaging of the �nal estimates. In Fig.3
(d) an example of this wrapping e¤ect for AM can be seen. The phase wrapping
e¤ects in the reconstructed phase distributions are seen as bright white sports. Note
that it also results in the worse reconstruction of the object amplitude.

5 Conclusions

In this work we present a phase retrieval algorithm based on simultaneous processing
of the data (with ASD and DDT as the forward propagation model) from a number
of parallel observation planes. Numerical experiments demonstrate the applicability
of the proposed algorithm for the reconstruction of the whole complex-valued wave
�eld distributions. The improvement of the reconstruction accuracy depending on
the increase of the number of observation planes is shown. The prior information
on the object type allows the proposed algorithm to obtain better accuracy with
respect to the successive SBMIR algorithm.
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