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ABSTRACT   

In our work we demonstrate a computational method of phase retrieval realized for various propagation models. The 
effects, arising due to the wave field propagation in an optical setup, lead to significant distortions in measurements; 
therefore the reconstructed wave fields are noisy and corrupted by different artifacts (e.g. blurring, "waves" on boards, 
etc.). These disturbances are hard to be specified, but could be suppressed by filtering. The contribution of this paper 
concerns application of an adaptive sparse approximation of the object phase and amplitude in order to improve imaging. 
This work is considered as a further development and improvement of the variational phase-retrieval algorithm 
originated in 1. It is shown that the sparse regularization enables a better reconstruction quality and substantial 
enhancement of imaging. Moreover, it is demonstrated that an essential acceleration of the algorithm can be obtained by 
a commodity graphic processing unit, what is crucial for processing of large images.  
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1. INTRODUCTION  
The conventional sensors detect only the intensity of the light, and the phase is systematically lost in measurements. The 
phase information can recover the shape of the object, making it useful in metrology and imaging, e.g. microscopy, 
astronomy, material analysis, etc. Since optical phase cannot be measured directly, computational phase recovering 
techniques are required for imaging and data processing. The traditional computational methods of the wave field 
reconstruction can be divided into two groups according to the physical implementation: interferometric techniques with 
a reference beam and phase-retrieval methods with no reference beam. The latter approach is more reliable, robust to 
various disturbances (as vibrations) and technically simpler.  

An efficient iterative algorithm for phase retrieval is originally proposed by Gerchberg and Saxton 2, initially for a single 
measurement plane. The common idea consists in iterative replacement of the estimated magnitudes at the observation 
planes by measured or a priori information 3-4. It is shown that such iterative phase recovering can be realized either with 
respect to the object plane 5 or to measurement planes 6. Moreover, similar methods are proposed for Fresnel instead of 
Fourier transforms as the transfer functions of the wave field propagation both for the wave field reconstruction 7-8 and 
design 9-10. In 1982 Fienup systematized the earlier works and introduced some, for now classical, types of phase-
retrieval algorithms 11. Despite the fact that solutions are in general not unique 12-13, the ambiguity of the reconstructed 
phase can be substantially reduced using a number of observations 14, both for the reconstruction 15-16 and for synthesis 
17. It is recognized that larger number of measurements leads to better reconstruction quality 18.  

Another phase recovering method, proposed by Teague, is phase diversity. The phase is reconstructed by measuring the 
axial intensity derivative, where the direct solution can be found from two 19 or multiple defocusing images 20 with the 
transport of intensity equation (TIE). TIE based techniques are shown to be computationally efficient, but very noise-
sensitive 21 and fail in case of large amounts of noise. Moreover, the result of phase retrieval is object-dependent what 
means that the measurement setup parameters are hard to be optimized. This suggests application of the iterative 
algorithm with an adaptive regularization. 
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In our work we consider the optimal wave field reconstruction, developed in terms of a variational constrained maximum 
likelihood formulation as it is originated in 1. It is found that additional filtering of the reconstructing object distribution 
results in essential improvement in imaging 22. For an enhancement of imaging we improve our model of phase retrieval 
and use the sparse regularization as a modern and one of the most efficient numerical techniques used for this purpose 23. 
According to the sparsity hypothesis an approximation of the object amplitude and phase is performed separately with 
small number of items of very specific basis functions named BM3D-frames 24. In this paper we analyze the advantage 
which can be obtained by the incorporation of this sparse approximation (originated in 25 and developed in 26-27) for 
various propagation models: free space propagation and plane-to-plane propagation in a 4f system. Especially for fast 
processing of large images (say, 1024×1024 and more) our parallel algorithm is realized with a graphic processing unit 
(GPU) providing an essential decrease of the algorithm runtime. The results are presented for a commodity GPU using 
MATLAB: the implementation is easy in use, and it gives an opportunity for further performance improvements. 

  

1.1 Propagation model 

In our work we consider a typical optical setup, where a coherent complex-valued wave field is assumed to be 
propagated from an object plane to a parallel measurement plane. This free space forward wave field propagation is 
traditionally modeled according to the scalar diffraction theory. Let u0(x) and ur(x), x��2 denote the wave field 
distributions at the object and the r-th measurement plane, respectively. Assume that zr is a distance between the object 
and the r-th observation plane, zr = z1+(r-1)·�z, r=1,…K, where z1 is the distance from the object to the first 
measurement plane, �z is the distance between the observation planes. K is a number of these planes. Then the link 
between the wave field distributions at these planes takes the form 

 
22 2

0( ) { }( ), ( ) ( / ) exp(2 ) ,r r r r ru x g u x g x iz i z x� � �� � � � � � �r r r  (1) 

Here �  denotes the convolution operator, � is the wavelength, and rg is the diffraction kernel for the distance zr . In this 
case the intensity observations can be obtained using a moveable sensor 18 (see Fig. 1a) placed at the measurement plane. 
The forward wave field propagation can be calculated in the Fourier transform domain as follows 28-29 

 
2 22 2
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with the spatial frequencies �=(�1, �2). Since the transfer function hr describes only a phase modulation, the wave field 
propagation to the distance zr can be realized by a phase modulating spatial light modulator (SLM, see Fig. 1b) in the 4f 
optical system as it is originated in 30. The sampled version of hr corresponding to zr is programmed on the SLM placed 
at the Fourier plane. 

In our work we consider a discrete model (digital sensors, SLMs are 2D arrays of liquid crystal cells), assuming that the 
wave field at the object, Fourier and measurement (sensor) planes are pixel-wise invariant. Then, all continuous 
arguments are replaced by digital ones (e.g. x=(x1,x2)�k=(k1,k2)) with the corresponding replacement of continuous 
distributions by their discrete counterparts (e.g. u0(x)�u0[k]). Using the conventional vector-matrix notation the link 
between the planes can be rewritten as follows:  

 0 ,  1,...K,r r r� � �u A u  (3) 

where Ar��
n×n is a forward propagation operator; u0��

n and ur��
n are vectors, constructed by the column-wise 

concatenation of the 2D discrete wave field distributions (complex-valued Mx×My matrices) at the object and sensor 
planes, respectively. The length of the constructed vectors is n=Mx�My. Various propagation operators, derived from the 
Rayleigh–Sommerfeld integral, can be used in the forward propagation modeling 31, 32. In this work we consider the 
object wave field reconstructions from the experimental data made according to the model presented in 30. Thus, the 
wave field reconstructions are made by the conventional angular spectrum decomposition (ASD 28). However, the 
computational performance is considered both for ASD and for the discrete diffraction transform in the spatial domain 
(M-DDT 33) as a propagation method for accurate pixel-to-pixel mapping from u0 to ur.  

In the real optical setup the result of the wave field propagation is corrupted due to different distortions in the optical 
track as sensor noise, dust, focusing errors, etc. The intensity observation model is of the form 
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Figure 1. Optical models for phase retrieval: (a) free space propagation along the optical axis; (b) plane-to-plane 

propagation in a 4f system with filter operators hr programmed on the phase modulating SLM at the Fourier plane 
30. The lenses L1 and L2 with the focal distance f provide mapping the object wave field to the sensor plane.  

 

 2| | ,  1,...Kr r r r� � �o u �  (4) 

with an additive error �r. In this paper we consider the object reconstruction both by simulations with zero-mean 
Gaussian noise (for simplicity �r[k]~N(0,�2) with the same variation �2 for different planes as in 1,24-27) and from 
experimental data with real disturbances in the optical track. 

 

1.2 Reconstruction formalization: constrained maximum likelihood and sparse regularization 

It is recognized that the forward wave field propagation cannot be compensated properly by the corresponding backward 
operator. The propagation operators, mapping an object wave field to a finite-size sensor at the observation plane, are ill-
posed. Moreover, these operators cannot specify all disturbances of the optical track. In 1 the object wave field estimate 
is found according to the variational maximum likelihood approach with the classical Tikhonov regularization.  The 
object reconstruction is formulated as the following constrained optimization 

 
0

K 22 2
0 0 02 221

1arg min subject to ,  1,...K,
2 r r r r

r
r�

��

� � � � � � �
u
u o u u u A u  (5) 

where the quadratic fidelity term appears due to our assumption that the observation noise is Gaussian, and μ>0 is a 
regularization parameter included a prior to "stabilize" the solution in case of noise or ill-posed propagation operators Ar. 
In 22 it is shown that the adaptive regularization (realized via BM3D filter) results in a significant improvement in 
imaging. Thus, sparse modeling is decided to be included because of high performance and flexibility of this technique34: 
it allows overcoming the loss of information due to the ill-posedness of forward propagation operators, wiping out 
different artifacts of the reconstructions, filtering noise, and therefore enhancing the resulting quality. The difference of 
this work concerns in separate sparse modeling for the object phase and amplitude via the powerful BM3D-frame filter, 
specified for denoising and other imaging problems 24,35.  

Following 25-27 we use the object wave field in the form u0=a0�exp(j��0), where "�" is the Hadamard product, and a0��
n 

and �0��
n denotes the object amplitude and phase, respectively. According to the sparsity hypothesis we use an 

approximation of a0 and �0 (separately) with small number of components of basis functions. Note that there is no prior 
information on the object modulation as in 36. Sparse image approximation can be given in the synthesis or analysis form 
as follows: 

 
0 0

0 0

=  , (synthesis)
=  , (analysis)

a a

a a

� �

� �

� � �

� � �

a � � � � �
� � a � � �

 (6) 

Here �� and �� are the frame transform matrices, and the vector �����m can be considered as a spectrum (m�n) in a 
parametric data adaptive approximation (subindices a and � are shown for the amplitude and phase, respectively). It is 
recognized that, in contrast to classical orthonormal bases (m=n), overcomplete frame based modeling is a much more 
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efficient for imaging 34, 37 and results in a better wave field reconstruction accuracy. The sparsity of approximation is 
characterized by either the l	 norm ||�||	 defined as a number of non-zero components of the vector � or the l
 norm ||�||
 
as the sum of absolute values of items of the vector �. Note that results obtained by l	 or l
 norms are shown to be closed 
to each other 38. Taking into account the sparse modeling for the object amplitude and phase, the wave field 
reconstruction is performed by minimization of the criterion 25-27 

 

K 22
2 21

0

0 0

0

1  subject to
2

,  1,...K,               (forward propagation)             
=  ,         (analysis)       

exp( )     (synthesis)

r r a a p p
r

r r

a a

a a

J

r

j

� �

� �

� �

� �
��

� � � �

� � �
� � �

� � � �


 o u � �

u A u
� � a � � �
u � � � ��

 (7) 

where the regularization terms for the object amplitude and phase are taken using the l	 or l
 norms (in (7) p={0,1}). The 
positive parameters �a and �� define a balance between the fit to observations, smoothness of the wave field 
reconstruction and complexity of the model (cardinality of the spectra of the amplitude and phase). Instead of the single-
object minimization of J we use a multi-objective optimization because of two reasons: simpler implementation (filtering 
and inverse procedure are decoupled) and the resulting better reconstruction quality (see e.g. 24-27). Then the constrained 
minimization (7) can be rewritten in the unconstrained one with changing the constraints for sparse modeling by the 
quadratic penalties with positive weights. Therefore we introduce two criterion functions:  

 
K 22 2 2

1 0 0 0 02 2 221

1 1 1 2 1[ Re{ ( )}]
2

H
r r r r r r r

r
L

� � � ��
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 o u u A u � u A u u v  (8) 
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a
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�

� �
� �

� � � � � � � �� � � � a � � �  (9) 

where (�)H  stands for the Hermitian conjugate, v0=�a�a�exp(j�����) is an approximation of the complex-valued object 
distribution u0 . The synthesis and analysis constraints in (7) are replaced by the penalties with the corresponding 
positive parameters � , �a and �� in (8) and (9). The main difference from 26, 27 is the Lagrangian term in addition to the 
fidelity term in L1. Thus, in (8) we have the augmented Lagrangian criterion 39 with complex-valued variables: �r��

n are 
the Lagrangian multipliers, the parameter �>0 is equal for all planes. The usage both the linear and quadratic terms 
enables the stability of the saddle point of the augmented Lagrangian. 

   

2. DECOUPLED AUGMENTED LAGRANGIAN (D-AL) ALGORITHM 
It is recognized that the minimization of L1 on u0 in general results in increasing of L2 and vice versa, optimization of L2 
with respect to spectra �a and �� increases L1. This problem can be interpreted in terms of the game theory as a 
noncooperative interaction between the players. A compromise in this selfish behavior can be found in the fixed point 
(u0

*,�a
*,��

*) of the optimization called Nash equilibrium 40,41. Then, the complex-valued object wave field distribution is 
reconstructed using decoupling of the inverse procedure and filtering of the object amplitude and phase (see also 42).  
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The algorithm solving the problem (10) has the following iterative form 

Proc. of SPIE Vol. 8429  84291N-4

Downloaded from SPIE Digital Library on 12 Jul 2012 to 134.102.61.246. Terms of Use:  http://spiedl.org/terms



 

 

0

1 1
2 0 0 0,

1 1
1 0

1 1
0

1
0 1 0 0 0

( , ) arg min ( , , , ),  exp( )

arg min ( , , ),          1,...K 

( ),         1,...K
arg min ( ,{ },{ }, ),  

a

r

t t t t t t t
a a a a

t t t
r r r

t t t t
r r r r

t t t t t
r r

L j

L r

r
L

�
� � � �

�

� �

� �

� �

�

� � �

� �

� � � � � �
� �

� �

u

u

� � a � � � v � � � �

u u u �

� � u A u
u u u � v a

�

0 0 0| |,  arg{ }t t t�u � u

 (11) 

Note that the minimization of L2 is performed separately with respect to �a and ��. Depending on the chosen l	 or l
 
norm in L2 the so-called “soft” or “hard” thresholding is appeared for the amplitude or phase estimation. Indeed, we 
consider the optimization problem 

 
2

2

1 min
2 p

�
�

� � �
�

� u �  (12) 

for p={0,1}. Note that according to the additive nature of the norms the problem can be solved independently for each 
component of �i , i=1,…m. The solution of the optimization problem (12) is the following thresholding 34:  

 
( ) (| | )     for  = 1

( )
(| | 2 )         for 0

sign p
h

p��
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����� � � �
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where (·)+ denotes the positive projection. The optimal complex-valued {ur
t} and u0

t are calculated in accordance with 
the minimum conditions. Here the parameters � and � are the same for all r, thus only one parameter �=�2�/� is used in 
the solution of the minimization of L1 on u0. Minimization of L1 on ur is produced separately for every r and k.  

Similar to 1 we are looking for the optimal fitting to the observations or by the nonlinear operator denoted as                   
� =argmin{ur}L1 (see (A5) and (A6) in 1). Such an optimization operation (the update of ur

t) is denoted as "opt". In 27 it is 
shown that for small amounts of noise the calculation of ur

t can be greatly simplified with a replacement of the calculated 
magnitude by the measured one as in the multi-plane phase-retrieval algorithms (e.g. 22). This case is denoted as "MF".  

Taking into account these two models of the recalculation of ur
t , the solution of the multi-objective optimization (11) is 

calculated with the following iterative algorithm:  

Initialization for t=0: 0 0 0 0
0 0 0= exp(j ),  { }ru a � �� , transform matrices �a , �	 , �a and �	       

Repeat for t=1,2… 
1 1
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 1 1/2( ), 1,...Kt t t t
r r r r r�� �� � � � �� � u u  (17) 

End on t 

The filtering operation (14) can be presented as follows:  

1. Analysis. Highly correlated image blocks are distinguish and stacked together to form a 3D data array, which is 
decorrelated by an invertible 3D transform (calculation of the spectrum estimates �a

t and ��
t). 
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2. Processing. 3D group spectra obtained from 3D data array are filtered by thresholding ���(separately for the object 
amplitude and phase).  

3. Synthesis. Filtered spectra are inverted providing estimates for each block in a group. These blocks are returned to 
their original positions, and then the final image estimate is aggregated by weighted averaging over all block-wise 
estimates (construction of the object estimate v0

t). 

The details related to the derivations of the main steps can be found in 1,25-27. The augmented Lagrangian based phase-
retrieval algorithm (14)-(17) is called decoupled augmented Lagrangian (D-AL), because the inverse procedure of the 
object wave field reconstruction (16) and the filtering operation of the reconstruction object amplitude and phase (what is 
different from the AL algorithm 1) in the BM3D-frame domain (14) are decoupled.  

 

3. NUMERICAL EXPERIMENTS 
In our numerical experiments we consider the reconstruction of the amplitude-only object wave field distribution given 
as u0=a0, �0[k]=0, (for simulations 0.1
a0
1), where a0 is a standard USAF 1951 test chart. In the discrete model the 
object and Fourier planes are assumed to be pixelated by square pixels of the size �0=3.45�m and �s=8�m, respectively, 
with 100% fill factor 43. The wavelength �=532nm corresponding to a green Nd:YAG laser. The presented 
reconstructions are given for K=5 noisy observations with the fixed distance between the planes �z=2mm, z1=20mm. The 
thresholding parameters for the amplitude �a�a and phase ���� vary for different experiments. The regularization 
parameter of the AL algorithm is fixed and equal to μ =0.05 (it is used because of noisy data). In D-AL we use fixed 
�=90/21 in (16).  

The initialization for t=0 concerns the object distribution (e.g. u0
0[k]=½), Lagrangian multipliers (e.g. {�r

0[k]}=0) and 
the BM3D-frames for the synthesis and analysis for both the object amplitude and phase. The updating step in (15) is 
taken small � =1/40 for all K planes in the "opt" case. �=0 for the "MF" case and the Lagrangian multipliers are not used 
{�r[k]=0} as in 27.  

The experimental results are shown for 100 iterations of the algorithm, including the initialization. The initial guess u0
0 is 

calculated by AL during T iterations. It is found that the duration T of the calculation of an initial guess for u0 affects to 
the reconstruction quality: lack (T<Tp) or excess (T>Tp) of preprocessing may decrease the reconstruction accuracy (see 
Fig. 2). 

 

          
Figure 2. Convergence of the D-AL algorithm depending on the duration T for the initial calculation of u0

0 by AL 1: 
(left figure, dashed curves) lack of preprocessing (T<Tp), (right figure, dash-dotted curves) excessive pre-
reconstruction (T>Tp), (dotted curve) the proper choice Tp. The solid curve corresponds to the object reconstruction 
by AL only.  
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Figure 3. Fragments of the reconstructed amplitudes obtained by (a) AL 1, RMSE(a0)=0.094, (b) D-AL, "opt" case in 

(15), “soft” thresholding, �a�a=0.05, RMSE(a0)=0.039 and (c) D-AL, "MF" case in (15), “hard” thresholding, 
�a�a=0.1, RMSE(a0)=0.043. These results are presented for synthetic simulations, with zero-mean Gaussian noise 
in the observations, �=0.05, K=5.  

 

The proper duration of the object wave field preprocessing (Tp) is found here experimentally: we take 50 iterations for 
the object initialization by AL 1 and 50 iterations for the D-AL algorithm (14)-(17).  

 

3.1 Numerical simulations 

In Fig. 3 we compare the reconstruction of the object amplitudes obtained from synthetic data by (from left to right) the 
original AL algorithm and two implementations of the D-AL algorithm realized according to the formulas, denoted as 
"opt" and "MF", respectively. The visual advantage of the D-AL algorithm is obvious. The corresponding cross-sections 
for these estimates are illustrated in Fig. 4. The wave field reconstruction accuracy is given in root-mean-square error 
(RMSE) values for the whole image of the size Mx×My=1024×1024. 

It can be seen that the results of the "opt" and "MF" cases of the D-AL algorithm are closer to the true object shape, 
while the AL reconstruction is noisy and corrupted by clear diffraction artifacts. In order to suppress the artifacts and 
noise we apply BM3D-frame filtering with “soft” and “hard” thresholding with various parameters for the shrinkage. 
Firstly, it is found that the "opt" case, which is computationally more expensive, enables usually better reconstruction 
accuracy and a more contrast result. Here for the reconstruction with “soft” thresholding the "opt" case gives 
RMSE(a0)=0.039, but RMSE(a0)=0.047 for the "MF" case. Visually the difference concerns in smoothing of small 
details of the image.  

 

 
Figure 4. The cross-sections of the reconstructed amplitude for the tests presented in Fig. 3. 
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Figure 5. Reconstructions of the object amplitude from experimental data, obtained by (a) AL 1, (b) D-AL "opt" with 

over-smoothing, �a�a=0.2, (c) D-AL "opt", �a�a=0.05 and (d) D-AL "opt" with over-smoothing, no filtering of the 
DC-term in the BM3D domain, �a�a=0.9. 

 

Secondly, it is recognized that the“hard” thresholding is more efficient for noise suppression, however it may lead to 
blurring of reconstructing components (compare the borders of geometric elements in Fig. 3b and 3c). It is a challenge to 
find a balance for sharp imaging, especially in case of real experimental data with no true signal for testing: improper 
parameters result in oversmoothing or noisy reconstructions.  

 

3.2 Reconstructions from experimental data 

Further we present some examples of the amplitude estimates, obtained from the experimental data of the wave field 
propagation in the 4f system. These observations {or} are obtained in the Bremen Institute of Applied Beam Technology 
(BIAS, http://www.bias.de) according to the model originated in 30, 44. Here we reconstruct a part of the object 
distribution of the size Mx×My=1024×1024 for the related focal distance f=53.125mm 31. 

In Fig. 5 we compare the resulting imaging obtained by D-AL with various parameters of “soft” thresholding. It can be 
seen that the fluctuations (especially on the borders), which occur in the AL reconstruction (Fig. 5a) are partially 
suppressed by D-AL. Nevertheless, the reconstruction quality in case of large thresholding parameter (Fig. 5b) is poor 
because of oversmoothing. The reconstruction with a smaller thresholding parameter is sharper but noisy (see the 
corresponding cross-sections in Fig. 6b). It is found that a better imaging can be obtain by BM3D-frames with no 
filtering of the DC terms of the constructed 3D group and processing with respect to –a0

t +max(a0
t) instead of a0

t. It 
enables a better suppression of "waves", but the image contrast is worse (see Fig. 5d).     
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Figure 6. Cross-sections of the reconstructed amplitudes for the tests, presented in Fig. 5. The results are shown along 

the dotted lines shown in comparison of (a) Fig. 5a (here, thin curve) with Fig.5b (thick curve); (b) Fig. 5a (thin 
curve) with Fig. 5c (thick curve).  

 

3.3 Computational performance  

Here we present the comparison of computational performance for different implementations of the D-AL. It is clear that 
the operations (15)-(17) can be realized independently for any r-th plane and k-th component of the wave field 
distribution. In order to use the advantage of this parallel structure of the algorithm these operations are realized on a 
GPU. We demonstrate the results of simulations in MATLAB 7.13 (R2011b) using Nvidia GF460GTX with CUDA 4.1. 
The presented numbers are obtained by Monte Carlo simulations with averaging over 50 experiments. The computer 
used for experiments is Intel i5 2500 (4 physical cores) at 3.3 GHz; 8Gb RAM, Windows 7 SP1.  

Since the BM3D-frame filtering is realized for CPU only, the overheads consists (mostly) of memory allocation and data 
transference between GPU and CPU: the amplitude a0

t and phase �0
t estimates from GPU to CPU and back the filtered 

update of v0
t . The profile of the presented speedup is calculated with respect to three time-consuming operations (15)-

(16) performed on GPU. Thus, the full procedure can be divided into four parts: the estimation of the wave fields at K 
sensor planes ur

t-1/2 (with the percentages of runtime p1), their update ur
t (p2) and the object reconstruction u0

t (p3). Other 
operations including the update of {�r

t[k]} (if ��0) and CPU/GPU transference are defined as overheads and takes the 
rest of runtime (p4, sumi(pi)=1). In Table 1 the acceleration for these operations in average for K={3,5,8} for square 
images of the size M×M, M={512,1024,2048} are presented. Note that the "opt" and "MF" cases differ only in the 
update of ur

t. 

We consider the "opt" and "MF" cases for recalculation of the sensor wave field estimates ur
t and compare two 

implementations of the wave field propagation realized via FFT, and in matrix form via DFT or using M-DDT 33 
(denoted as matrix in Table 1). The forward wave field propagation model (2) can be rewritten in terms of (3) via DFT as 

 

2

0 2

0 1 1 0 2 2
1 1 2 2

2( ( )),  ( ) ( ) ( ) exp( 1 ),

2 2 , [ , ] exp( ), [ , ] exp( ),

sDFT s s r
r r r r

s s
x y x y

vv v izh d
f f f

k v k vv k k v
i f i f

�	 � 	 	
� � �

� �
� �

� �

�� ��

�� �
� � � � � � � �

� � � �
�  � �

! !u W h W u h

W W W W W

�
 (18) 

where 
�denotes the Kronecker product, hr defines samples of hr, 
 is the 2D Dirac delta function and DFT expressed as 
Vandermonde matrices Wx and Wy for the spatial frequencies v/	f=(v1/	f,v2/	f). Note that here ���2 and v��2. The 
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accurate pixel-to-pixel model in terms of M-DDT (with "non-averaged" matrices Cx and Cy because the propagation is 
for the "in-focus" distance 33) looks absolutely similar and gives a very close result 

 0( ( )),   , [ (:) [:,1],  (:) [:, 2],  ...]M DDT
r l r l x y l l l� � � � �  �u C C h C C u C C C C C C� � �  (19) 

where l(:) is the vector, constructed by columns concatenating of the 2D discrete distribution of the lens transmittance 
l[k]=exp(-i�/�f·||k||2). Note that all these transform matrices C, Cl and W are calculated only once. It is straightforward 
from (18) that the backward propagation for DFT based models is of the form 22  

 1 1 1
0

1

1 ( ( ))
K

FFT
r r

rK
� � �

�

� � �
u W h W u�  (20) 

and for M-DDT based model we have 

 1 1 1
0

1 ( ( )),  [ (:) [:,1],  (:) [:, 2],  ...]M DDT H H H H H H H
l r l r l l l

K
� � � �� � � �u C C h C C u C C C� � �  (21) 

 
Table 1. Computational accelerations si for different parts of the D-AL algorithm. 

computational 
algorithm \ 
accelerating 

operations (for 
M×M image)  

estimate ur
t-1/2 update ur

t estimate u0
t overall speedup SA 

M= 

512 

M= 

1024 

M= 

2048 

M= 

512 

M= 

1024 

M= 

2048 

M= 

512 

M= 

1024 

M= 

2048 

M= 

512 

M= 

1024 

M= 

2048 

FFT, "MF" 4.5 7 4.4 9.3 11.4 9.5 5.1 9.1 9.4 5.9 8.9 4.3 

matrix, "MF" 2.8 1.8 1.1 9.4 11.3 9.4 2.8 1.9 1.3 3 1.9 1.3 

FFT, "opt" 4.5 7 4.4 1.3 2 2.8 5.1 9.1 9.4 1.4 2 3 

matrix, "opt" 2.8 1.8 1.1 1.2 2.1 2.9 2.8 1.9 1.3 1.7 1.9 1.4 

 

Taking into account the overheads, the overall speedup SA of the algorithm is found according to Amdahl’s law 45,46 

 1/ ( / )A i i
i

S p s� 
  (22) 

where si is the acceleration (speedup) of the program part pi. It is well-known that SA is usually substantially smaller than 
the improvement found for individual parts because of different value of pi relative to the whole program and additional 
overheads. In our case the realization via FFT with simple replacement of the magnitude ("MF" case) demonstrates the 
best performance. High rate of the overall speedup SA is due to the approximately uniform distribution of the 
computational consumption: for the presented operation p1:3={29,28,38}(%) in average. The worst case is for the FFT 
realization with the optimization of the sensor plane wave fields ("opt" case), because the accelerated operations take a 
minor part: the computational consumption is p1:3={7,81,9}(%). The greater the overheads the smaller the benefit from 
the parallelization. In our case it is mostly because of limited RAM of GPU, and the performance decreases significantly: 
see the results for Mx×My=2048×2048.  

 

4. CONCLUSION 
In this paper the augmented Lagrangian based phase-retrieval algorithm with powerful BM3D-frame filtering is analyzed 
for various propagation scenarios. We consider the reconstruction quality of the algorithm and computational 
performance by mean of implementation using a graphic processing unit in the 4f system and in the free space 
propagation (depending on the used transform matrices). The developed phase-retrieval algorithm is treated as a further 
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development of AL 1 with sparse approximation both for amplitude and phase objects. The D-AL algorithm 
demonstrates a significant improvement of the reconstruction accuracy and enhanced imaging comparing with AL both 
for noisy synthetic and experimental observation data. It is shown that the parallel processing with a commodity GPU 
results in essential acceleration of the wave field recalculation: even in MATLAB we have a good acceleration for the 
whole algorithm up to 9 times. It is found that for worse CPUs (e.g. with one or 2 cores) the contrast is more significant: 
for Intel Core 2 Duo E8400 at 3GHz SA the speedup for FFT, "MF" is approximately 20 times. The presented GPU based 
realization of D-AL can be considered as an easy solution for processing of large images, and it is a good motivation for 
the further more specific implementations.  
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