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Abstract

A light field, considered with regard to the scalar diffraction theory, being monochro-
matic and linearly polarized, may be completely described by its amplitude/intensi-
ty and phase. The conventional digital imaging sensors detect only the light inten-
sity. The phase of the radiation scattered from or transmitted through an object
carries, however, a lot of important information about the object (e.g., its shape or
thickness), which is of importance in many application areas such as microscopy,
astronomy, material analysis, deformation detection, etc. The problem of recover-
ing the phase from multiple (noisy) intensity observations of diffraction patterns
recorded at different measurement planes is referred to as phase retrieval. This
thesis is devoted to the development of novel iterative phase-retrieval methods
and algorithms. The choice of the iterative phase-retrieval approach is due to its
relatively simpler experimental arrangement and a lower sensitivity to noise and
setting errors of the optical system comparing with interferomentic methods or
deterministic phase-retrieval techniques.

In contrast to the conventional phase-retrieval methods focused mainly on wave
fields at the sensor planes, the phase recovering discussed in this thesis is concen-
trated on the object wave field, which produces the diffraction patterns at the mea-
surement planes. For the accurate discrete-to-discrete modeling of the free space
diffraction propagation of the transverse object wave field to the sensor planes
(dictated by the use of digital devices) a novel discrete diffraction transform is
constructed and analysed. The backward wave field propagation and therefore the
object estimation are represented by inverse imaging, via the regularized inverse
of the forward propagation operator.

The complex-valued object wave field reconstruction is formulated in terms of
the variational constrained maximum likelihood approach, targeting on the op-
timal object amplitude and phase reconstruction from noisy measurement data,
and a good imaging. The developed parallel multi-plane phase-retrieval algorithms
enable an efficient aggregation and processing a number of object estimates. Pro-
vided the given prior knowledge about the modulation type of the object (for the
amplitude- or phase-only object to be reconstructed) a significant enhancement
of phase retrieval is obtained by the corresponding modifications of the parallel
algorithms. In addition, the incorporated object sparse modeling results in a very
effective separate regularization (filtering) of noisy object amplitude and phase.

In this thesis we also consider the conventional 4f configuration with a phase
modulating spatial light modulator as an optical mask to imitate the lensless
multi-plane optical setup. Various disturbances arising in a real optical system
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iv Abstract

due to dirt/dust, misfocusing, aberrations, misalignment are suggested to be com-
pensated by an introduced cumulative equivalent at the entrance of the optical
system. Such a compensation of cumulative distortions is shown to essentially in-
crease the reconstruction quality: a state-of-the-art filtering and a sharp imaging
of the object are achieved from both synthetic and experimental data.
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Introduction to the thesis

A stationary monochromatic wave field, propagating in an isotropic, homogeneous,
nondispersive and nonmagnetic medium, is commonly described at any point of
space by its so-called complex amplitude, which contains the amplitude and phase.
While the intensity of the scalar light wave field (amplitude is the square root of the
intensity) is detected by eyes or measured using commodity digital cameras, the
phase can not be directly recorded by an imaging sensor. However, the phase car-
ries a lot of important information on the object, which the light wave is reflected
from or passed through. It can be shown that the phase significantly determines
imaging of objects. This phase information allows representing the volumetric
object, i.e its shape, thickness, small surface distortions and so on. It is very
essential for microscopy, material analysis, deformation detection, astronomy to
name a few. In order to recover the complex amplitude of a light wave field one
requires computational techniques recovering the phase.

The conventional approaches of the complex-valued wave field reconstruction
can be divided into three groups according to the physical implementation:

• interferometric (holographic) techniques with an auxiliary reference beam;

• techniques based on the principle of the Shack–Hartmann sensor (microlenses
array);

• phase-retrieval techniques with no reference beam.

The interferometric methods are based on the superposition of the coherent
object and reference waves at the sensor plane. The phase information is ex-
tracted from a number of intensity measurements of the resulting interferometric
patterns obtained by temporal or spatial phase shifting (see phase shifting holog-
raphy and shearography). Despite a potentially high reconstruction accuracy and
lateral resolution (high quality imaging), the requirement of an additional refer-
ence beam leads to a considerable efforts of adjustment, a more complex optical
setup, and high demands regarding the temporal/spatial coherence of the light
and mechanical stability of the optical system.

The Shack–Hartmann sensor based methods recover the phase (piecewise) from
the measurement of the slops generated by a wavefront. An array of microlenses
produces a number of spots on a sensor corresponding to portions of the incident
wavefront. The phase is recalculated by measuring the displacement of the result-
ing spots with respect to the reference positions of the focal points of the used
microlenses. No reference beam is required. However, the crucial disadvantage of
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xii Introduction to the thesis

this method is the low spatial resolution related to the size of microlenses: evi-
dently the smaller lenses are, the more accurate representation of the phase can
be achieved. Thus, the arrangement of these sensors is relatively complex and
expensive.

Phase retrieval is an approach of phase reconstruction using a number of inten-
sity observations of diffraction patterns from different measurement planes. Ex-
perimental arrangements for phase-retrieval methods are often technically simpler
and cheaper competing with the previous methods, because one detects only the
result of the diffraction propagation with no reference waves. This latter approach
has lower demands with respect to the coherence of the light and the mechani-
cal stability of the setup, it is more reliable and robust to various disturbances
such as vibration. Typically, these are two different phase-retrieval approaches:
deterministic one based on the so-called transport-of-intensity and transport-of-
phase equations, and iterative approach, which consists of periodic replacement
of the estimated amplitude of the diffraction wave field at the observation planes
by measured or a priori information. The deterministic methods are relatively
fast but have high demands regarding to the setting accuracy of the optical sys-
tem, and as the result they are very sensitive to noise, misfocusing, misalignment,
etc. We consider iterative phase-retrieval techniques while we try to reduce these
requirements to the accuracy of the experimental data.

In this thesis we propose iterative multi-plane phase-retrieval algorithms de-
veloped in terms of variational constrained optimization problem, and based on
the maximum likelihood approach targeting on the optimal amplitude and phase
reconstruction from noisy data. The phase recovering is focused on the object
wave field: its good reconstruction quality and imaging. The developed parallel
scheme of phase retrieval enables an efficient aggregation and processing a num-
ber of object estimates. Moreover, the use of a priori information on the object
(in certain modifications of the phase-retrieval algorithms for the amplitude- and
phase-only objects) significantly enhances the reconstruction accuracy. In addi-
tion, the incorporated object sparse modeling is employed for effective separate
filtering of noisy object amplitudes and phases.

Outline of the thesis

This thesis can be roughly divided into three parts. The first part is devoted to
preliminaries on the thesis topic. In Chapter 1 we firstly demonstrate the role of
the phase information on object imaging: the phase significantly determines the
resulting light wave field distribution. Section 1.1 provides a historical overview of
philosophy of light and development of imaging devices. In Section 1.2 main used
characteristics of light, its amplitude/intensity and phase, as well as light wave
phenomena, namely: polarization, interference and diffraction, are discussed. In
Section 1.3 we consider principles of the scalar diffraction theory and describe the
link between two arbitrary points of the monochromatic linearly polarized light
wave field in free space. In Section 1.4 the fundamental interferometric methods
of the complex-valued light wave field reconstruction are described. Since the
interferometric and phase-retrieval techniques process experimental data obtained
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using real optical system, where spatial light modulators (SLMs) are exploited
(e.g., in the 4f optical system as an optical mask to imitate the lensless optical
setup for the free space diffraction propagation), then in Section 1.5 we briefly
overview the optical diffractive elements used for the modulation of the optical
wave field. In Chapter 2 we consider the basic principles of the phase-retrieval
techniques. Firstly, in Section 2.1 we present the used plane-to-plane diffraction
propagation model. Secondly, in Section 2.3 we formulate the inverse problem of
phase retrieval. Then, in Section 2.4 two fundamental phase-retrieval techniques,
deterministic and iterative ones are discussed. In addition, in Section 2.4.4 the
concept of developed parallel iterative phase-retrieval algorithms is considered.

In the second part, in Chapter 3 we consider the novel discrete modeling of
the wave field diffraction propagation. Due to the use of a digital devices such as
an imaging sensor or a liquid crystal based phase modulating SLM it is straight-
forward to construct a precise discrete-to-discrete model linking the object and
sensor plane discrete wave field distributions. In Section 3.2 the forward discrete
diffraction transform is introduced: the values of the discrete wave field distri-
butions both at the object and sensor planes are assumed to be averaged within
their pixels. This idea enables an aliasing free forward propagation model given in
the spatial and frequency domains. The so-called M–DDT and F–DDT models,
constructed based on such an averaging, are presented in Section 3.2.1 and Sec-
tion 3.2.3, respectively. In Section 3.3 we specify the sampling condition providing
the perfect reconstruction in the considering discrete modeling of the diffraction
propagation. The object reconstruction from the given (noisy) complex-valued
measurement by inverse of the presented M–DDT is discussed in Chapter 3.5.

In the third part we propose the parallel iterative multi-plane phase-retrieval
algorithms as they were developed and improved. In Section 4.1.2 we formulate
the problem of phase retrieval in the used vector-matrix notation of the diffrac-
tion propagation. Then, in Section 4.2 the initial parallel multi-plane scenario of
phase retrieval as a variation of the conventional Gerchberg–Saxton algorithm is
presented. In Section 4.4 the augmented Lagrangian (AL) based parallel phase-
retrieval algorithm and its modifications in case of known amplitude and phase
modulations of the object are described. It is found that the parallel scenario
enables much better results and imaging using the additive incorporate filtering
of the object amplitude and phase. Chapter 5 is devoted to the object sparse
regularization represented via the powerful block matching 3D (BM3D) filtering.
In Section 5.2 we introduce the concept of the sparse approximation of the ob-
ject amplitude and phase, reformulate the optimization problem and describe an
advanced version of the AL phase-retrieval algorithm (denoted by D–AL) with
a spatially adaptive separate filtering of the object amplitude and phase. Fur-
ther, in Section 5.3 we take into account various disturbances arising in the real
coherent imaging system, in particular in the used 4f configuration, due to mis-
alignment, misfocusing, dust on optical elements, reflections, vibration, etc. The
idea of the improvement of the reconstruction quality by the compensation the
cumulative disturbances of the optical pathi recalculated to the object plane by a

i Note that the optical path means the whole optical system with various optical elements
(simple as lenses or quite sophisticated as SLMs) and the layer of free space which light passes
through. The real optical path includes various distortions such as misalignment of optical
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novel SPAR–BC algorithm is discussed in Section 5.3.2.
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eds., Optical measurement systems for instrumental inspection VII, Proc.
SPIE 8082, 80820L, (2011).
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optical system: background compensation and sparse regularization of object
with binary amplitude, ”Appl. Opt. 52, A269–A280 (2013).

In this monograph we highlight these papers by the following referring: P1,
P2, ... P7.

The development of M–DDT is presented in P1–P2 and [114, 115]. The most
significant contributions of the author concerns the analysis of M–DDT. In the
thesis we emphasize the following important aspects about the developed M–DDT
model:

X The indication of the potential reconstruction accuracy by the numerical
rank or conditioning number of individual transform matrices for processing

component, dirt, e.g., on the SLM or dust particles suspended in the air in front of a lens. In
addition, dirt/dust may dramatically corrupt the results of the diffraction propagation even with
no practical changes of the path of the rays, if it is, e.g., on the SLM in the Fourier domain.
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of rows and columns of input 2D wave field distributions (images). In Section
3.5.2 we consider the general case of rectangular pixel and image sizes of the
discrete wave field distributions at the object and sensor planes.

X Two alternatives for the backward wave field propagation introduced as the
inverse imaging: in Section 3.5.3 we consider the regularization by truncation
and compare it with the Tikhonov regularized inverse in the approximate and
accurate (Kronecker product based) forms.

X In Section 3.7 we consider different parameter-choice methods for the Tikhonov
regularization parameter.

The third part of this text, devoted to the developed phase-retrieval algorithms,
is the core of this work. The publications P3–P7 cited above and [149] represent
the original work on parallel multi-plane phase retrieval, where the author of this
thesis is the main contributor. Here we consider certain extensions of the published
analysis and some aspects of the object reconstruction by these algorithms, namely:

X In Section 4.3 we consider the indication of the reconstructed accuracy for
a sum of transform matrices what is essentially different from those that is
described in Section 3.5.2.

X In Section 4.4.3 we present a modification of the AL phase-retrieval algorithm
developed especially for the amplitude-only objects – the AL–A algorithm.

X In Section 4.4.5 we present the Gauss–Newton method for AL–Ph in case of
the phase-only objects with a known and unknown scalar amplitude. This
new approach is compared with the gradient descent AL–Ph phase-retrieval
algorithm (originated in P5, see Sections 4.4.4).

X In Section 5.4.1 we introduce a novel concept of the enhancement of the
reconstruction imaging using a synthetic background which accumulates dif-
ferent disturbances of the optical path. Such a background is generated by
the object reconstruction using inpainting of its details to uniform smooth
surface. It may be used for old unsuccessful object reconstructions, for which
the optical setting can not be provided: e.g., the investigating specimen is
destroyed or lost, the used optical system is not available, etc.

Notation and conventions

Here we declare some of the most significant notations and definitions used in the
throughout text.

The symbols C, R, R+, Z, and N indicate, respectively, the spaces of complex
numbers, real numbers, positive real numbers, integers, and natural numbers. A
complex number z ∈ C can be presented in the form z = zre + i · zim, where
zre = Re{z} ∈ R and zim = Im{z} ∈ R are the real and imaginary parts of z,
respectively. i is called the imaginary unit, i2 = −1. In the polar expression
z = r · eiArg{z}, where r = |z| =

√
z2
re + z2

im is the absolute value of z (amplitude)
or the length of the radius-vector joining the origin to the point with coordinates
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(zre,zim). The argument of z (the absolute phase) is denoted by Arg{z}, Arg{z} ∈
(−∞,∞), and the so-called principal value of Arg{z}, here the phase ii, is denoted
by φ = arg{z}, φ : C→ [−π, π). The phase wrapping operator W : R→ [−π, π) is
introduced as

W{Arg{z}} = mod(Arg{z}+ π, 2π)− π, (1)

i.e. the phase is determined to be consistent with W: φ = W{φ}. The symbol
~ denotes the continuous convolution, e.g., the convolution of two functions of
continuous variables

{g ~ h} (x) =

∫
g (x− v) · h (v) dv ∀x. (2)

The continuous Fourier transform is denoted by F{·} and the result of this
Fourier transform is indicated by the corresponding upper case letters as in [79]

G(v) = F{g(x)}(v) =

∫
g (x) · exp(−i2πvx)dx. (3)

In particular, the Fourier transform of a (in general, complex-valued) function
g(x, y) of two independent continuous variables x and y is of the form

G(v1, v2) = F{g(x, y)}(v1, v2) =

∫∫
g (x, y) · exp(−i2π(xv1 + yv2))dxdy. (4)

Similarly, we denote the inverse Fourier transform by F−1{·} as

g (x, y) = F−1{G(v1, v2)}(x, y) =

∫∫
G(v1, v2) · exp(i2π(xv1 + yv2))dv1dv2. (5)

The Dirac delta function can be loosely thought of as a function on the real
line which is zero everywhere except at the origin, where it is infinite [79]

δ(x) =

{
∞, x = 0
0 otherwise

. (6)

In addition,
∞∫
−∞

δ (x) dx = 1, and δ(x, y) of two independent variables

∞∫∫
−∞

h(ξ, η)δ (x− ξ, y − η) dξdη =

∞∫∫
−∞

h(ξ, η)δ (x− ξ)δ(y − η) dξdη = h(x, y). (7)

The Kronecker delta is a function of two (here integer) variables x and y given
in the form

δx,y =

{
1, x = y
0 x 6= y

. (8)

The rectangular function rect(·) is defined in the following form [79, 80]

rect
(x
α

)
=

{
1, |x| ≤ α

2
0 otherwise

, (9)

ii Despite the argument of z = 0 is, in general, indeterminate, we assume that arg{0} = 0 as
it is used in Matlab, where our calculations are performed.

http://www.mathworks.se/products/matlab/
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where the threshold α ∈ R+.
Given a discrete set d, the symbol # stands for the cardinality of d, i.e. #d

is the number of elements in the set d. The same notation is also used to indicate
the number of component of either a vector or a matrix. We denote a vector by
bold lower case (e.g., x) and a matrix is denoted by bold upper case (e.g., X) to
distinguish matrices from vectors. I is denotes the identity matrix.

The modulus |x| and square of the modulus |x|2 are the elementwise operations
applied to the elements of the corresponding vectors, thus | · | and | · |2 are vectors.
The `p norms as denoted by || · ||p. The `0-norm denoted by ||x||0 is a number
of non-zero components of the vector x [48, cf. Eq. (1.18)], and the `1 norm
is a sum of absolute values of components of the vector (Manhattan distance),
||x||1 =

∑
s |x[s]|. The only norm for matrices used in this text is the quadratic

Frobenius matrix norm defined by the formula ||A||2F =
∑
l1,l2
|A[l1, l2]|2.

The indicator function for a vector x of the length #x = N is denoted as
follows (con. Eq. (9))

1(|x| ≥ α) =

{
1, if |x[s]| ≥ α
0, otherwise

, (10)

where s = 1, ...N . The input of 1(·) is a real-valued vector to be tested: the
modulus of each component of the input vector to be compared with the threshold
α ∈ R+. The output is a binary vector of the same length as x: if |x[s]| is smaller
than the positive threshold, the s-th component of the output vector is equal to
zero; otherwise – equal to one.

Let the matrix X be of the size Nξ × Nη. The operation Y = ZPN1×N2
{X}

denotes zero-padding of the matrix X to the size (Nξ +N1)× (Nη +N2) so that
zero components of the resulting matrix Y[l1, l2]=0 are for l1 = 1, ...bN1

2 c, l2 =

1, ...bN2

2 c and l1 = Nξ + 1, ...Nξ + bN1

2 c, l2 = Nη + 1, ...Nη + bN2

2 c. b·c and d·e
stand for the floor and ceiling operations, respectively.

The discretization of the Fourier transform (3) via the Riemann sum is of
the form q[n] =

∑
l g[l] · exp(−i2πn∆1l∆ξ) · ∆ξ, where ∆ξ and ∆1 are the dis-

cretization step of the function g(x) and its Fourier image G(v), respectively. The
discretization of Eq. (4) is

Q[n1, n2] =
∑
l2

exp(−i2πl2∆ηn2∆2) ·∆η × (11)

×
∑
l1

G[l1, l2] exp(−i2πl1∆ξn1∆1) ·∆ξ, where n1, n2, l1, l2 ∈ Z,

and ∆ξ×∆η and ∆1×∆2 are the discretization steps for the two-dimensional (2D)
function g(x, y) and its Fourier transform G(v1, v2), respectively. If the matrix G
in Eq. (11) is of the size N1 × N2 and l1, n1 = −N1/2...N1/2 − 1, l2, n2 =
−N2/2...N2/2− 1, then 2D discrete Fourier transform for normalized frequencies
can be expressed via the exponential Fourier series as follows [21, 76, 189]

Q[n1, n2] = F{G}[n1, n2] = (12)

=

N1/2−1∑
l1=−N1/2

N2/2−1∑
l2=−N2/2

G[l1, l2] · exp

(
−i2π

(
l1n1

N1
+
l2n2

N2

))
,
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where conventionally ∆ξ = ∆η = 1. The discrete Fourier transform (DFT) in such
a form is denoted by F{·}. Similarly to Eq. (5), the inverse DFT for Q is denoted
by F−1{·} and defined by

G[l1, l2] = F−1{Q}[l1, l2] = (13)

=
1

N1N2

N1/2−1∑
n1=−N1/2

N2/2−1∑
n2=−N2/2

Q[n1, n2] · exp

(
i2π

(
l1n1

N1
+
l2n2

N2

))
.

To provide the one-to-one correspondence between the direct and inverse discrete
Fourier transforms G = F−1{F{G}} the 2D spectrum Q is taken of the same size
N1 ×N2 as the original G, and ∆1 = 1

N1
, ∆2 = 1

N2
.

The symbol ⊗ denotes the Kronecker product. In order to express matrix
operations via the standard vector-matrix notation, we use the vectorization op-
eration vec{·}, which converts a matrix into a column vector. Then, the matrix
multiplication can be represented as [99]:

vec{A ·X ·BT } = (A⊗B) · vec{X}, (14)

where the superscript T denotes the transpose operation.
The complex conjugation of a matrix or vector is denoted by the superscript

∗ and the conjugate (Hermitian) transpose – by the superscript H : xH = (x∗)
T

.
The hat decoration ̂ denotes estimated values.

The leftwards arrow symbol ← stands for the replacement operation: e.g.,
given the vectors x and y of the same length, x ← y means that all components
of x are replaced by the corresponding elements of y.

The following standard criterion functionsiii are used to represent the recon-
struction accuracy of an estimate of the vector x:

(peak signal-to-noise ratio) PSNR = 20 log10

(
max(x) ·

√
#x

‖x− x̂‖2

)
,

(root-mean-square error) RMSE =
‖x− x̂‖2√

#x
.

For convenience we list the abbreviations, symbols and acronyms most fre-
quently used in the thesis.

iii The reconstruction quality is represented via PSNR and RMSE as the conventional metrics
for imaging. Moreover, they are experimentally found to be more valuable for comparison of
object wave field reconstructions than, e.g., the structure similarity (SSIM, [225]) or correlation
coefficient.
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List of abbreviations

2D, 3D = Two-, Three-Dimensional

AL = Augmented Lagrangian

AM = Amplitude modulation of the object wave field

ASD = Angular Spectrum Decomposition

BM3D = Block Matching 3Div

CCD = Charge-Coupled Device

DDT = Discrete Diffraction Transform

DFT = Discrete Fourier Transform

F–DDT = Frequency domain Discrete Diffraction Transform

FFT = Fast Fourier Transform

GS = Gerchberg-Saxton iterative phase-retrieval algorithm

LS = Least Squares

M–DDT = Matrix Discrete Diffraction Transform

M-DFrT = Matrix Discrete Fresnel Transform

M-IDFrT = Matrix Inverse Discrete Fresnel Transform

ML = Maximum Likelihood

PM = Phase modulation of the object wave field

PSNR = Peak Signal-to-Noise Ratio

RI = Regularized Inverse

RMSE = Root-Mean-Square Error

RS = Rayleigh–Sommerfeldv

SLM = Spatial Light Modulatorvi

SVD = Singular Value Decomposition

iv Sparse modeling based filtering procedure developed in [34, 35, 37, 38, 117].
v Typically it means the Rayleigh–Sommerfeld diffraction kernel or its integral.

vi Here it is basically a liquid crystal (LC) based phase modulating SLM.
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List of symbols

∆· = Pixel size [m]

∆z = Fixed distance between the sensor planes [m]

εr = Additive noise at the r-th sensor plane

~E = Electric field [V/m]

λ = Wavelength [m]

µ = Regularization parameter in the Tikhonov regularized inverse

σ = Standard deviation of the additive Gaussian noise

τε = Tolerance used for calculation of the numerical rank of the M–
DDT transform matrices

φ = Phase

i =
√
−1

f = Focal length [m]

k = Wave number [m−1]

u = Complex amplitude of a scalar wave field

F / F−1 = Continuous direct / inverse Fourier transform

F / F−1 = Discrete direct / inverse Fourier transform

~H = Magnetic field [A/m]

∂ = Partial differential

~ = Convolution operator

⊗ = Kronecker product

◦ = Hadamard (element-wise) product

arg{·} = Principal value of the argument Arg{·}

diag(x) = Square diagonal matrix with the components of the vector x in
the main diagonal

Im{·} = Imaginary part

Re{·} = Real part

vec{·} = Vectorization procedure of a matrix to a column vector



Chapter 1

Preliminaries

Imaging is an interdisciplinary research area with profound applications in many
areas of science, engineering, technology, and medicine. The most natural form
of imaging is visual inspection, which has dominated before the technical and
computer revolution era. Optical technologies and the study of light go way back
in human culture, reflecting in the development of optical artifacts such as mirrors,
lenses, imaging devices and knowledge about sight and ocular diseases.

Nowadays digital (computer) imaging covers various aspects of image acquisi-
tion, processing, compression, storage, printing/visualization. Traditionally, light
is considered via its intensity only. Captured (observed) images may be corrupted
by various distortions due to, e.g., dust, aberrations in optical systems, digital
noise of a camera and some other more sophisticated causes (say, atmospheric tur-
bulence in astronomy). In this case various filtering procedures such as denoising
and/or deblurring are required in order to improve the intensity imaging quality.
Note that the phase of the light field plays an important role (perhaps, more im-
portant than intensity) in imaging. In general, the visualization quality of small
objects can be significantly improved using the wave properties of light.

A scalar monochromatic linearly polarized light wave field can be completely
described at any point of space by a complex function called “complex amplitude”
which contains the amplitude and phase of the light field. The conventional sensors
detect only the light intensity. The phase of radiation diffracted by an object
carries however important information about the object surface and structure.
The issue of imaging the phase of an object has been of considerable interest for
many years. Starting from landmark works by Frits Zernike (e.g., [239], Nobel
prize in 1953) a variety of phase visualization techniques have been developed
that are now in routine use by optical microscopists. At the same time, none of
the phase contrast microscopy based techniques is able to yield quantitative phase
data [171].

The phase problem is the name given to the problem of loss of phase informa-
tion in physical measurements. Since conventionally the phase cannot be measured
directly, computational phase recovering techniques are required for imaging and
data processing. Moreover, it can be shown that the phase significantly deter-
mines the resulting object image, hence the accuracy of the phase estimation is a

1
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Figure 1.1: Phase carries more information than amplitude (intensity) [64, cf. slide 8].
The phase swapping (arg{W} ← arg{F{X}} and arg{Y} ← arg{F{V}}) in the Fourier
domain leads to almost complete swapping of the amplitude content of two original
images in the spatial domain.

crucial point. This key idea can be illustrated by the classical experiment with the
replacement of the phase information in the Fourier domain (see Fig. 1.1). It is
known that the diffraction wave field propagation to the so-called far-field zone1

can be described by the Fourier transform. Let the complex-valued Fourier trans-
forms of two images W = F{V} and Y = F{X} considered as observations be
obtained. Swapping the phases of these Fourier transforms arg{W} and arg{Y}
we almost completely swap the amplitude content of these images in the spatial
domain |F−1{|W|◦exp(i arg{Y})}| and |F−1{|Y|◦exp(i arg{W})}|. That is very
different from the conventional light representation via the intensity only.

This thesis deals with one of the computational approaches for the reconstruc-
tion of the complex-valued light field, called phase retrieval. Also we consider the
filtering of the reconstructed object amplitude and phase for imaging enhancement.

In this Chapter we present important introductory principles required for un-
derstanding the problems of reconstruction of a complex-valued wave field, which
this thesis is dedicated to. In Section 1.1 we present brief historical overview of
understanding the nature of light and the invention of imaging devices. An in-
troduction to certain basic fundamentals of the phenomenon of light wave field
and used terminology is given in Section 1.2. The mathematical description of
the diffraction propagation of the light wave field in free space is presented in
Section 1.3. The conventional interferometric methods used to reconstruct the
complex-valued object wave field are described in Section 1.4. The diffractive
optical elements, which are used in optical systems for the light modulation, are
discussed in Section 1.5.

1 It means the Fraunhofer distance, see Section 1.3.7.
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1.1 Historical overview

The history of direct imaging began in the ancient times [179, 220]. For instance,
the oldest lens artifact, Nimrud lens, unearthed by Austen Henry Layard, is dat-
ing back over three thousands years to ancient Assyria. Another artifact, a well-
preserved flat-convex lens of rock crystal in a frame made 2500 years BC, was
discovered by Heinrich Schliemann during his famous excavations of Troy. A
small lens of crystal made around 1600 BC is found in the ruins of the palace
of Knossos on Crete. Ancient Egyptian statues were decorated with rock crystals,
semi-precious stones and glass to imitate eyes. The Babylonians manufactured
convex lenses from polished crystals, often quartz. Lenses made of the artificial
material – glass – dating 600–400 BC were found in Sargon (Mesopotamia). How-
ever, since these lenses had poor magnifying qualities, they were most likely used
in ornamentation or as curiosities.

The first documented works on the nature of light and vision occurred toward the
middle of the first millennium BC in oriental and Greek schools of philosophy.
Chinese Mohism dealt with the ray propagation, reflection and refraction of light:
in particular, Chinese philosopher Mozi (ca. 470 – ca. 391 BC) wrote on the use
of concave mirrors to focus the sun’s rays [179]. In India, the Samkhva, Nyaya,
and Vaisheshika approximately from the sixth to fifth century BC constructed a
theory of light and made light or fire (tejas) one of the five elements of the world;
the two latter schools distinguished between the fire from luminaries and the fire
from the eye, and conceived both as diverging streams of atoms [39].

In the sixth century BC, a few bold Greek thinkers rejected the traditional ap-
peal to supernatural forces in the explanation of natural phenomena and replaced
these forces with causes to be found in nature itself. The ancient Greeks held
diverse (emission/extramission and reception/intromission [173, 188]) theories of
visual perception that differed from modern optics in essential manner: their spec-
ulations about light were hindered by the lack of knowledge about how the eye
works. Plato combined the analysis of visual perception by Pythagoras, Empe-
docles and Democritus in his dialogue Timaeus (ca. 360 BC): sight is possible
upon the notion that eyes are composed of some “internal fire” which goes out
from eyes to investigate objects and is interacted with the “external fire”of visi-
ble light (“day light”reflected or emitted from luminous sources) [65]. Some early
ideas of the Greeks, however, were correct. Aristophanes in his play (The clouds,
423 BC) describes the light focus effect of a lens. The philosopher and statesman
Empedocles of Agrigentum (ca. 490 – 430 BC) believed that the light travels with
finite speed, and the philosopher and scientist Aristotle (384 – 322 BC) rightly
explained the rainbow as a kind of reflection from raindrops.

The ancient Greek philosophers (Plato, Aristotle and the Stoics) did not pro-
vide any precise understanding of visual appearances and deceptions, they relied
more on philosophical debate and pure thought rather than on experimentations
to prove ideas, and their theories were essentially qualitative. There was, how-
ever, the Greek geometrical optics according to which the perception of image
depended on the incidence of visual rays on the various points of the objects [39].
In about 300 BC, Euclid wrote Optica, in which he studied the light propagation
and postulated that light travelled in straight lines. Where Euclid had limited his
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analysis to simple direct vision, Hero of Alexandria (ca. 10 – 70 AD) extended the
principles of geometrical optics to consider problems of reflection (catoptrics). In
his Catoptrica, Hero demonstrated the equality of the incident and reflected an-
gles on the grounds that this is the shortest path between the source and point of
observation (Hero’s principle, e.g., [190, Chapter 1.1]). The use of optical devices
can be illustrated by, e.g., “Archimedes heat ray”: Archimedes may have used
mirrors acting collectively as parabolic reflectors to burn ships during the Siege of
Syracuse (ca. 214 – 212 BC).

The renowned Roman emperor Nero was said to watch the gladiatorial games
using an emerald (presumably concave to correct for myopia [182]). Both Pliny
the Elder (23 – 79 AD) and Seneca the Younger (3 BC – 65 AD) described the
magnifying effect of a glass globe filled with water. Claudius Ptolemy (ca. 90 – ca.
168 AD2) extended the study of vision beyond direct and reflected vision: he also
studied the nature of refraction. His works and records of experimental data on
optics was further used by the Islamic scholar and scientist Alhazen (Abu Ali al-
Hasan ibn al-Haitham, 965 – ca. 1040). This Egyptian scientist made significant
contributions to the principles of optics, as well as to physics, astronomy, mathe-
matics, ophthalmology, philosophy and visual perception, what strongly influenced
the further study of light. He investigated the magnification produced by lenses,
reflection and refraction. Following the ancient Greek physician and philosopher
Galen of Pergamon (ca. 129 – ca. 200), Alhazen described the process of sight,
the structure of the eye, image formation in the eye, and the visual system. In
his Kitāb al-Manāz. ir he extended the work of Ptolemy on binocular vision; gave a
full account of the principle of camera obscura. Using Alhazen’s work, the English
philosopher and Franciscan, Roger Backon (ca. 1214 – 1294), studied in his Opus
Majus the magnification by convex lenses and suggested the application of lenses
in the correction of defective eyesight. Around 12843 spectacles were invented.

The inventor of optical microscope is unknown. Dutch spectacle-makers Hans
Janssen and his son Zacharias are often said to have invented the first compound
microscope around 1595. While experimenting with several lenses in a tube, they
discovered a great magnification of objects what was a forerunner of the com-
pound microscope and telescope. Hans Lippershey, a German-Dutch lensmaker,
is generally credited with the earliest recorded design for an optical telescope (a
refracting telescope) in 1608. A description of Lippershey’s instrument quickly
reached Galileo Galilei, who created his own improved version in 1609, “perspicil-
lum,”with which he made the observations of the Moon, the stars, and the moons
of Jupiter found in his Sidereus Nuncius of 1610. The refraction law was named
after the Dutch mathematician Willebrord Snellius: he discovered the law empir-
ically in 1621. However, the French philosopher Rene Descartes was the first how
published (in his La Dioptrique, 1637) the now familiar formulation of the law of
refraction in terms of sines.

The effects of diffraction of light were first carefully observed and characterized
by Francesco Maria Grimaldi, who also coined the term diffraction, from the Latin

2 Note, that we hereafter consider the historical overview and dates for the Current Era only
and the year label AD is therefore omitted.

3 Salvino D’Armato degli Armati of Florence is credited with inventing the first wearable eye
glasses, but the modern evidence suggests that this was a hoax.
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diffringere, “to break into pieces”, referring to light breaking up into different di-
rections. The results of Grimaldi’s observations were published posthumously in
1665 [85]. The interference generated by thin films was observed and described
by Robert Hooke (1635–1703). James Gregory (1638–1675) observed the diffrac-
tion patterns caused by a bird feather, which was effectively the first diffraction
grating. In 1704 Isaac Newton described in his Opticks multiple-prism dispersion
in terms of the corpuscular theory of light. Christiaan Huygens constructed the
mathematical basis for the wave theory of light and published it in his Traité de
la lumière in 1690. He proposed that light was transmitted through an all per-
vading luminiferous aether that is made up of small elastic particles each of which
can act as a secondary source of wavelets. The interference principle introduced
by English polymath Thomas Young (1773–1829) and the Huygens principle were
used by Augustin-Jean Fresnel (1788–1827) to calculate the diffraction patterns of
different objects [125]. The polarization of light was described by Young, Fresnel
and Francois Arago (1786–1853) as a vibration in the aether transverse to the di-
rection of propagation [198]. In 1811 Fresnel and Arago discovered that two beams
of light, polarized in perpendicular directions, did not interfere. Such physical ex-
periments on polarization, interference and diffraction were convincing arguments
in favour of the wave theory and helped to overturn Newton’s corpuscular theory
(about 1840 [198]). The relations between light, electricity and magnetism were
recognized by Michael Faraday (1791–1867). These phenomena were summarized
by James Clerk Maxwell in A treatise on electricity and magnetism (1873) in this
well known equations. The further works of Heinrich Hertz (1857 – 1894), Max
Planck (1858 – 1947), Albert Einstein (1879 – 1955), Louis de Broglie (1892 –
1987), Arthur Compton (1892 – 1962), Niels Bohr (1885 – 1962) and many others,
and the construction of quantum mechanics were convincing evidence that there
is no aether, and all particles exhibit both wave and particle properties (wave–
particle duality). Nowadays light is interpreted as a stream of massless particles,
photons, which in many physical effects exhibit the properties of electromagnetic
waves.

In the nineteenth century there was a revolutionary step in imaging – a pho-
tographic camera: the first permanent photograph was made in 1826 by Joseph
Niépce and the daguerreotype (introduced in 1839) was the first commercially suc-
cessful photographic process. Photographic plates/films combine three functions:
image recording, image storage and image display. X-ray imaging is originated
from the works by Wilhelm Conrad Röntgen (1895, the first Nobel Price in 1901)
[236]. In 1907, Russian scientist Boris Rosing used a cathode ray tube (CRT) in
the receiving end of an experimental video signal to form a picture: he managed
to display simple geometric shapes onto the screen. The CRT technology was used
as a display device (in particular, for television). Further, in 1931, the electron
microscope was constructed by German physicist Ernst Ruska (Nobel Prize in
Physics, 1986) and electrical engineer Max Knoll. The works of Otto Lehmann
and Viktor Nikolaevich Zvetkov on liquid crystals (LCs), and the invention of
the charge-coupled device (CCD) by Willard Boyle and George Smith (Bell Labs,
1969; Nobel Prize in Physics, 2009) gave a powerful tool for modern sophisticated
techniques of image acquisition, processing and imaging. With the invention of the
laser (around 1960, [82, 141]) and the computer the process of interpenetration of
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optics and electronics has begun. One of the consequences of that process was the
appearance of new optical elements recalculated or reprogramming by computer
(spatial light modulators, SLMs [47, 159, 207]) in the late 1960s. The development
of computer technologies and new materials gave the real possibility of numerical
calculation of complex characteristics of a light field.

1.2 Foundations for description of light field

Let us describe the physical properties of light waves and the primary used phe-
nomena – interference and diffraction, which take place because of the wave nature
of light.

1.2.1 Light intensity

The only parameter of light which is directly amenable to sensor – eye, photo-
diode, CCD-target, etc. – is the intensity (and in a rough scale the frequency
as color) [125]. Here we consider a monochromatic light field in a nonmagnetic
and nondispersive medium. Intensity is defined by the energy flux (optical power)
through an area per time. Let E(x, y, z) be the complex amplitude of the electric
field. From the Maxwell equations for an electromagnetic wave propagation in an
isotropic medium the light intensity I is [56, 190]

I(x, y, z) =
cε0n

2
· |E(x, y, z)|2, (1.1)

where n is the refractive index of the optical medium, ε0 is the vacuum permittiv-
ity4 and c0 is the vacuum velocity of light. Thus, the intensity of a monochromatic
wave is simply proportional to the absolute square of its complex amplitude, and
the amplitude of the light wave is defined as

a(x, y, z) =
√
I(x, y, z). (1.2)

Taking into account that there is no sensor which can follow the frequency of
light5, the momentary intensity is not measurable, and we have to integrate over
a measuring time6 T

I(x, y, z) =
1

T

T/2∫
−T/2

E(x, y, z, t)E∗(x, y, z, t)dt, (1.3)

where the proportionality constant c0ε0n
2 is hereafter omitted for simplicity, and

T � 0 is much longer than the time of an optical cycle but much shorter than any
other time of interest [125, 190].

4 The electric permittivity of vacuum ε0 ≈ (1/36π) · 10−9 [F/m].
5 For instance, the visible light frequency range extends from about 384 up to 769 THz.
6 Note that in general the flow of electromagnetic power is governed by the time average of

the Poynting vector ~E(x, y, z, t) × ~H(x, y, z, t) = Re{~E(x, y, z) · ei2πvt} × Re{ ~H(x, y, z) · ei2πvt},
where ~E(x, y, z, t) and ~H(x, y, z, t) are the electric- and magnetic-field vectors, v is an optical

frequency. The optical intensity is the magnitude of the vector Re{ ~S(x, y, z)}, where ~S(x, y, z) =
1
2
~E(x, y, z)× ~H∗(x, y, z) may be regarded as a complex Poynting vector [190, cf. §5.3].



1.2. Foundations for description of light field 7

1.2.2 Phase of light wave field

In addition to the intensity, there is also the phase of the light field. In general, the
phase of a wave field is a function of the position in 3D space and time, because
it describes the part of a complete wave oscillation. In this work we consider a
harmonic wave function of the monochromatic light in the form [79, 80]

U(x, y, z, t) = Re{a(x, y, z) · ei(φ(x,y,z)−2πvt)} = Re{u(x, y, z) · e−i2πvt}, (1.4)

where v is the optical frequency, U(x, y, z, t) represents any of the scalar com-
ponents of the electric (or magnet) field. The time dependent term 2πvt in Eq.
(1.4) is known a priori: it is spatial-independent, but constantly changes in time.
Thus, this time-dependent term is equal for all light wave field having the same
wavelength λ (frequency v) and propagating in exactly the same medium with
refraction index n. φ(x, y, z) describes the spatial distribution of the phase. Prac-
tically it may also be of importance the wavefront – the surface of equal phase
φ(x, y, z) = const (even rather φ(x, y, z) − 2πvt = const), which represents the
structure and behavior of light waves (see Fig. 1.2).

The phase is defined here in the interval [−π, π). In order to correct jumps
modulo 2π and overcome the discontinuity, where two adjacent phase values have
extreme values of either −π or π (or close to them), one produces so-called phase
unwrapping, depending on the sign of the jump underlying phase change. For
instance, if the phase difference between two neighboring pixels is less than −π
(larger then π), one adds (subtracts) multipliers of 2π to the following pixels on-
ward, what result in a (piecewise) continuous phase distribution [194, Chapter
2.7.6]. For 2D phase distributions the problem becomes more complicated be-
cause a proper path of processing is required. Such a path is typically found in
accordance with the structure of the phase distribution7.

Note that the phase unwrapping can only be performed in the areas with no
phase singularities8, i.e. zeros of the light wave field (points of zero intensity) [51].
Phase unwrapping and phase singularities are out of scope of this thesis.

Figure 1.2: ”Redistribution” of the optical intensity by the phase [64, cf. slide 9]. Light
travels in direction perpendicular to the wave front φ(x, y, z) = const. In addition, we
obtain dimmer spot where light wave spreads out, and brighter one – where light is
concentrated.

7 See, e.g., [72] for basic principles of 2D phase unwrapping, and powerful algorithms of 2D
phase unwrapping from noisy data like [44, 45, 222].

8 In these points the phase gradient becomes infinite, and the phase variation along a closed
loop around such points is always an integer multiple of 2π [70, 163].
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1.2.3 Polarization of light

Since the light is an electromagnetic vector wave field, we need to mention about
the polarization. The polarization of light at a fixed position is traditionally de-
termined by the time course of the electric-field vector ~E(x, y, z, t). In a sim-
ple (isotropic) medium, this vector lies in a plane tangential to the wavefront
at that position. For monochromatic light, any two orthogonal components of
the complex-amplitude vector ~E(x, y, z) in that plane vary sinusoidally with time,
with amplitudes and phases that are generally different, so that the endpoint of
the vector ~E(x, y, z) traces an ellipse. Since the wavefront generally has different
directions at different positions, the plane, the orientation, and the shape of the
ellipse also vary with the position [190, cf. Fig. 6.0-1]. We consider a monochro-
matic light wave traveling in the z direction, and assume that the light wave is
vibrating in a single plane. Thus, we consider a plane polarized wave in the xy
plane. Let us write the polarization vector of the light for this case as [81, cf. Eq.
(4.3-1)], [190, cf. Eqs. (6.1-3), (6.1-4)]

~E(z, t) =

[
Ex(z, t)

Ey(z, t)

]
=

[
axe

iφx cos(i2π( zλ − vt))
aye

iφy cos(i2π( zλ − vt))

]
, (1.5)

what describes the state of polarization in that plane. For a plane wave the
wavefronts are parallel to transverse planes and the polarization ellipses are the
same everywhere (see [190, Fig. 6.0-1]). The orientation and ellipticity of the
polarization ellipse determine the state of polarization of the plane wave, whereas
the size of the ellipse is determined by the optical intensity. When the ellipse
degenerates into a straight line or becomes a circle, the wave is said to be linearly
polarized or circularly polarized, respectively. The polarized light can be described
via the so-called Jones vector [79, 125]

q =

[
axe

iφx

aye
iφy

]
. (1.6)

The linearly polarized light with polarization direction at an angle θ is defined
by q =

[
cos θ
sin θ

]
and represented via its time course and the trajectory of the endpoint

of the vector ~E(z, t) (Eq. (1.5)) at a fixed time t as it is illustrated in Fig. 1.3.

Figure 1.3: Linearly (plane) polarized light: (a) time course at a fixed position z, (b) a
snapshot of the trajectory of the endpoint of the vector ~E(z, t) at a fixed time t [190, cf.
Fig. 6.1-3].
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In this thesis a monochromatic linearly polarized light wave is considered.
Firstly, such a light wave is completely characterized at every point of space by its
intensity/amplitude and phase only [190], what significantly simplify the mathe-
matical apparatus used to describe the free space wave field propagation. Secondly,
our choice is based on the conventional approach in laser optics. Nevertheless, it
can be used different wavelengths λ (frequencies v), and our work can be applied
in a hyperspectral imaging system (see, e.g., [105, 184]).

1.2.4 Diffraction and interference of light waves

Diffraction refers to various phenomena which occur when a wave encounters an
obstacle. Following Grimaldi’s experiments, when a light wave is transmitted
through a small aperture in an opaque screen and travels some distance in free
space, one may observe a quite specific intensity distribution called the diffraction
pattern. If light were treated as rays, the diffraction pattern would be a shadow
of the aperture. Because of the wave nature of light, however, the diffraction
pattern may deviate slightly or substantially from the aperture shadow (see [85,
pg. 9]), depending on the distance between the aperture and observation plane,
the wavelength, and the dimensions of the aperture [190]. The term diffraction
can be defined as any deviation of light rays from rectilinear paths which cannot
be interpreted as reflection, refraction or bending of light rays in a medium with
a continuously varying refractive index [79, 204].

The initial step in the evolution of the wave theory that would explain diffrac-
tion effects was made by Huygens in 1678. He expressed the intuitive conviction
that if each point on the wavefront of a disturbance were considered to be a new
source of a “secondary” spherical disturbance, then the wavefront at a later in-
stant could be found by constructing the “envelope” of the secondary wavelets9,
as illustrated in Fig. 1.4 [79, 194].

Figure 1.4: Huygens’ envelope construction [79, cf. Fig. 3.4].

9 “Each element of a wavefront may be regarded as the centre of a secondary disturbance
which gives rise to spherical wavelets ”; and moreover “the position of the wavefront at any
later time is the envelope of all such wavelets ” [20, Chapter 3.3.3].
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Figure 1.5: Young’s double-slit interferometer: a point source of light illuminates two
narrow adjacent slits in a screen, and the image of the light that passes through the slits
is observed on a second screen. The dark and light regions are called interference fringes,
the constructive (greater amplitude than either one) and destructive (lesser amplitude)
interference of light waves [190].

In 1803 further significant progress occurred: Thomas Young strengthened the
wave theory of light by introducing the critical concept of interference, according to
which two coherent waves superimpose to form a resultant wave of greater or lower
amplitude (intensity). The idea was a radical one at those time, because light could
be added to light and produce darkness (see Young’s double-slit interferometer in
Fig. 1.5, [204, cf. Fig. 114, Eq. (26.14)]). Generally, it is difficult to determine
the exact difference between interference and diffraction. We rather refer to the
following quotation from the known Feynman lectures [55, Chapter 30-1]: “No
one has ever been able to define the difference between interference and diffraction
satisfactorily. It is just a question of usage, and there is no specific, important
physical difference between them. The best we can do, roughly speaking, is to say
that when there are only a few sources, say two, interfering, then the result is
usually called interference, but if there is a large number of them, it seems that the
word diffraction is more often used”.

The ideas of Huygens and Young were brought together in 1818 in the famous
memoir of Fresnel (the Huygens–Fresnel principle [20, 190]), and further put on a
firmer mathematical foundation by Gustav Kirchhoff, who showed in 1882 that the
amplitudes and phases ascribed to the secondary sources by Fresnel were indeed
logical consequences of the wave nature of light. The Kirchhoff theory was also
modified by Arnold Sommerfeld (1896), who gave the first truly rigorous solution
of a diffraction problem using the theory of Green’s functions [79, 80]. In this
thesis the used mathematical apparatus of the diffraction propagation is based on
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the Kirchhoff and Rayleigh–Sommerfeld theories treated as a scalar phenomenon,
neglecting the fundamentally vectorial nature of the electromagnetic fields.

1.2.5 Coherence of light waves

Note that with the sunlight or lamplight we rarely observe interference. Only light
of sufficient coherence will exhibit this effect. Roughly speaking, coherence means
the ability of light waves to interfere. Precisely, coherence describes the correlation
between individual light waves10 [125]. Let we consider the concept of interfer-
ence. Since the time-dependent part in Eq. (1.4) is known a priori, we consider
the complex amplitude of a monochromatic light wave which is purely spatially
dependent. When two or more light waves are simultaneously present in the same
region of space and time, the total wave function is the sum of the individual
wave functions. This basic principle of superposition follows from the linearity of
the wave equation, in particular for monochromatic waves of the same frequency
(wavelength), the superposition principle carries over to the complex amplitudes,
which follows from the linearity of the Helmholtz equation [190, Chapter 2.2].
If two monochromatic waves with complex amplitudes u1(x, y, z) =

√
I1e

iφ1 and
u2(x, y, z) =

√
I2e

iφ2 are superposed, the result is a monochromatic wave of the
same frequency that has a complex amplitude [190, 194]

u(x, y, z) = u1(x, y, z) + u2(x, y, z). (1.7)

Figure 1.6: Young’s double-slit experiment showing the source of the phase shift geomet-
rically (one-dimensional case). Two slits are idealized as two closely located point sources
S1 and S2 of a monochromatic light with the wavelength λ. The point A is the observation
point with the abscissa x. A projection screen is parallel to the plane of the sources S1

and S2. The distance between these planes z is much larger than the size of the sources,
distance between the light sources d� z and linear dimensions of the observations area
x � z. The path difference of the interfering waves is r1 − r2 = S2D = d sin θ ≈ xd

z

[190, 204, 205].

10 Temporal coherence describes the correlation with itself as it behaves at different time
instants and spatial coherence describes the mutual correlation of different parts of the same
wavefront (see [125]).
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Taking into account that the intensity of a monochromatic wave function is
the absolute square of its complex amplitude, the intensity of the total wave is

I = |u|2 = |u1 + u2|2 = |u1|2 + |u2|2 + u1u
∗
2 + u∗1u2 = (1.8)

= I1 + I2 + 2
√
I1I2 · cos(φ2 − φ1).

This relation, called the interference equation (interferogram [194]), demon-
strates that the amplitude of u is sensitive not only to the magnitudes of the con-
stituent waves u1 and u2, but also to the phase difference φ2 − φ1 = 2π

λ (r2 − r1).
In contrast to that, the sum of two incoherent waves is simply11 I = I1 + I2.

Interference is accompanied by a spatial redistribution of the optical intensity
without a violation of power conservation [190, cf. Fig. 2.5-1]. Furthermore,
I in Eq. (1.8) has its maximum and minimum value for φ2 − φ1 = 2πm and
φ2 − φ1 = 2π(m + 1

2 ), respectively (m ∈ Z), what is called constructive and
destructive interference (see Fig. 1.5). The interpretation via an object shape can
be given by the path difference r1 − r2 of interfering waves (by replacing 2π ← λ,
Fig. 1.6): the maximum and minimum of I can be defined as r1 − r2 = λm and
r1 − r2 = λ(m+ 1

2 ), respectively [204].

1.2.6 Holography and holograms

Holography got its name from the Greek words őλoς (hólos) meaning “whole/entire”
and γραϕή (graphē) meaning “to write”. It is a means for recording and recon-
structing the whole information contained in an optical wavefront, namely ampli-
tude and phase, and not just intensity as ordinary photography does. Holography
essentially is a clever combination of interference and diffraction. In 1948 Dennis
Gabor (1900 – 1979) presented holography as a lensless process for image forma-
tion by reconstructed wavefronts [68]. Invention of holography was motivated by
the desire to improve resolution power of electron microscopes that was limited by
the fundamental limitations of the electron optics and avoid the previous aberra-
tions. But the interest in holography declined after a few years, mainly because of
the poor quality of the holographic images obtained in those days [125]. Moreover,
powerful sources of coherent light were also not available at that date, and holog-
raphy remained an “optical paradox” until the invention of lasers. The very first
implementation of holography was demonstrated in the early 1960s by Emmett
Leith and Juris Upatnieks [133] and by Yuri Nikolaevich Denisyuk [41].

In holography, one records the interference patterns between two optical waves:
an object uobj (reflected from or transmitted through the object) and a special
“reference”uref ones. Since recording media respond typically to the light intensity
only12, one detects the intensity of the coherent superposition of these waves:

11 The complex degree of coherence is hereafter assumed to be equal to 1, what corresponds
to the full coherence of waves [125, 190]. In case of incoherent waves this factor is equal to 0,
hence there will be no additional (latter) term in Eq. (1.8).

12 Optical media for recording holograms may be classified into three categories:
amplitude/intensity-only (e.g., CCD), phase-only (kinoform [134, 135]) and combined amplitude-
phase media [207, 236].
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I(x, y) = |uobj(x, y) + uref (x, y)|2 = (1.9)

= |uobj(x, y)|2 + |uref (x, y)|2︸ ︷︷ ︸
DC term

+ u∗obj(x, y)uref (x, y) + uobj(x, y)u∗ref (x, y),

where the last term in the sum is proportional to the complex amplitude of the
wave field which travels from the object. That is what we call the hologram [236].
It is denoted here by I(x, y) in order to distinguish it from the simple sum of
intensities of two waves, I(x, y) 6= I1(x, y) + I2(x, y).

The optical reconstruction is achieved by illuminating a recording medium
with the reference beam [125, 194, 232, 234, 236]. Since the wave field uobj on a
detector is formed by the forward diffraction propagation from the object to the
sensor plane, the numerical reconstruction is to compute this complex-valued uobj
(e.g., by phase shifting) and to perform the backward wave field propagation.

1.3 Principles of scalar diffraction theory

An electromagnetic field is described by two related vector fields that are func-
tions of the position in the Cartesian coordinate system and time: the electric field
~E(x, y, z, t) and the magnetic field ~H(x, y, z, t). Since in this thesis the linearly po-
larized light is used, a monochromatic light field may be completely characterized
within the scope of the scalar wave theory at every point in space by means of its
amplitude and phase [120]. Therefore, in order to define light in free space one
uses six scalar functions of position and time, which must satisfy the celebrated
set of coupled partial differential equations known as Maxwell’s equations [190].

1.3.1 Maxwell’s wave equation

For a medium with no currents and charges, these equations for the electric- and
magnetic-field vectors can be written as follows [79, cf. Eq. (3-2)]

∇ · ~E(x, y, z, t) = 0, (1.10)

∇ · ~H(x, y, z, t) = 0, (1.11)

∇× ~E(x, y, z, t) = −µm
∂ ~H(x, y, z, t)

∂t
, (1.12)

∇× ~H(x, y, z, t) = εm
∂~E(x, y, z, t)

∂t
, (1.13)

where µm and εm are the magnetic permeability and electric permittivity, respec-
tively, of the medium within which the light wave is propagating. The vector
operators ∇· and ∇× represent the divergence and curl (rotor), respectively.

In this thesis the propagation of light is considered in free space (vacuum or air).
In a linear, isotropic, homogeneous (εm = const), nonmagnetic and nondispersive
medium both µm and εm are always equal to the constants of free space 4,13

13 Magnetic permeability of vacuum µ0 = 4π · 10−7 [H/m] .
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µm = µ0, εm = ε0. (1.14)

Let U = U(x, y, z, t) represents any of the scalar field components of the electric
or magnetic field. The light field at any point of free space (with the refractive
index n ∼= 1) can be found from the scalar wave equation [79]

∇2U − 1

c2
· ∂

2U
∂t2

= 0, (1.15)

derived from Maxwell’s equations14, where the Laplace operator ∇2 = ∂2/∂x2 +
∂2/∂y2 + ∂2/∂z2 and c = 1√

µ0ε0
is the speed of light in vacuum.

Indeed, applying the curl operation to the left and right sides of Eq. (1.12)
and using the vector equation

∇× (∇× ~E(x, y, z, t)) = ∇(∇ · ~E(x, y, z, t))−∇2~E(x, y, z, t), (1.16)

we arrive at

∇2~E(x, y, z, t)− 1

c2
· ∂

2~E(x, y, z, t)

∂t2
= 0. (1.17)

The magnetic field satisfies an identical equation

∇2 ~H(x, y, z, t)− 1

c2
· ∂

2 ~H(x, y, z, t)

∂t2
= 0. (1.18)

Since both ~E(x, y, z, t) and ~H(x, y, z, t) satisfy the identical vector wave equation,
an identical scalar wave equation is obeyed by all components of those vectors
[56, 79], and two vector wave equations (1.17) and (1.18) are divided into six
scalar wave equations similar to Eq. (1.15), but with respect to the individual
components Ex, Ey, Ez,Hx,Hy,Hz. The behavior of all components of the electric
and magnetic field is fully described by the single scalar wave Eq. (1.15).

1.3.2 Helmholtz wave equations

As it is mentioned above (see Section 1.2.3), the consideration of this thesis is
limited (for simplicity) to the propagation of monochromatic light waves (hereafter
wave field propagation). In such a case, a light field at the position (x,y,z) and
time t can be accurately described by a scalar wave function of the form [20, Eq.
(25)]

U(x, y, z, t) = Re{u(x, y, z) · e−i2πvt}, (1.19)

where v is the optical frequency as in Eq. (1.4). The complex function [20, 79, 190]

u(x, y, z) = a(x, y, z) · exp(iφ(x, y, z)) (1.20)

14 Note that, following [56], the general solution of the one-dimensional wave equation is the
sum of two arbitrary functions of the form of d’Alambert formula U = U(x, t) = h(x−ct)+g(x+ct)
[56, cf. Eq. (20.24)], [125, cf. Eq. (2.6)], representing two waves travelling with the speed c: the
wave h travels toward positive x, and g – toward negative x. This is the superposition of the
waves existing at the same time.
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Figure 1.7: The wave vector ~k and the plane cutting off segments c
kx

, c
ky

and c
kz

on the

Cartesian coordinate axes. The angles between ~k and the x, y and z axes are denoted
by α, β and γ, respectively.

works as an adequate description of a light wave, because the time dependence
e−i2πvt is deterministic. Here a and φ are the amplitude and phase of the light
wave, respectively. The complex amplitude of the light wave (1.20) depends only
on the spatial position and is often called a phasor. Substituting Eq. (1.19) in Eq.
(1.15) it follows that u(x, y, z) must obey the time-independent equation

(∇2 + k2) · u(x, y, z) = 0, (1.21)

where k denotes the wave number given by k = 2π/λ, and λ = v/c is the wave-
length of the monochromatic light wave in the dielectric medium. This equation is
known as the Helmholz equation. The most straightforward solutions of Eq. (1.21)
are those which describe uniform plane and symmetric spherical waves.

For a plane wave [138, Eq. (III.3)]

u(x, y, z) = a · e±i~k~r = a · e±i(kxx+kyy+kzz), a = const, (1.22)

where kx, ky, kz and x, y, z are the projections of the wave vector ~k and the
radius-vector ~r onto the Cartesian coordinate axes, respectively. Substituting Eq.
(1.22) in Eq. (1.21) we arrive at

k2
x + k2

y + k2
z = k2 =

(
2π

λ

)2

. (1.23)

The equal-phase surfaces is defined from the relation

kxx+ kyy + kzz = c = const, (1.24)

which represents an equation of the plane which cuts off the segments c
kx

, c
ky

and
c
kz

on the coordinate axes (see Fig. 1.7).

In this thesis the waves generated by a source are assumed to be propagating
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outward15 from this source [56]. Thus, the full expression for the plane wave is of
the form

U(x, y, z, t) = a · ei(kxx+kyy+kzz−2πvt), (1.25)

i.e. Eq. (1.22) is given for t = 0. If t = t1 > 0 the wave surface is described
by the expression kxx + kyy + kzz = c + 2πvt1 representing the equation of the
plane which cuts off segments c+2πvt1

kx
, c+2πvt1

ky
and c+2πvt1

kz
on the coordinate

axes. It follows that the plane wave propagates parallel to itself. If c = c(x, y, z) =
kxx+ kyy + kzz − 2πvt1 as we have seen before, then

∇c =
∂c

∂x
· ~jx +

∂c

∂y
· ~jy +

∂c

∂z
· ~jz = (1.26)

= kx · ~jx + ky · ~jy + kz · ~jz = ~kx + ~ky + ~kz = ~k,

i.e. the propagation direction of the plane wave coincides with the direction of the
wave vector. ~jx, ~jy and ~jz are hereafter the unit vectors in Cartesian coordinates.

The Helmholtz wave equation (1.21) in spherical coordinates is of the form

1

r
· ∂

2

∂r2
(ru) +

1

r2 sin θ
· ∂
∂θ

(sin θ
∂u

∂θ
) +

1

r2 sin2 θ

∂2u

∂ϕ2
+ k2u = 0, (1.27)

where variables r, θ and ϕ are defined from equations x = r sin θ cosϕ, y =

r sin θ sinϕ and z = r cos θ. For the symmetric spherical waves ∂u(r,θ,ϕ)
∂θ = 0 and

∂u(r,θ,ϕ)
∂ϕ = 0 due to the circular symmetry, therefore Eq. (1.27) can be simplified

as [56, cf. Eq. (20.34)] (
∂2

∂r2
+ k2

)
· ru(r, θ, ϕ) = 0. (1.28)

Then, for a diverging (expanding [79], outgoing [56]) spherical wave we arrive
at

u(r, θ, ϕ) = a
eikr

r
, a = const, (1.29)

and the equal-phase surfaces is determined from the identity kr = const, hence
r = const. Taking into account that r =

√
x2 + y2 + z2 the wave propagation

direction is defined by

∇kr = k∇r = k ·
(x
r
· ~jx +

y

r
· ~jy +

z

r
· ~jz
)

=
k

r
~r, (1.30)

i.e. the spherical wave propagates along the radius-vector ~r. Eq. (1.29) can be
rewritten as

u(x, y, z) = a
eik
√
x2+y2+z2√

x2 + y2 + z2
. (1.31)

Note that the wave source is assumed to be at the origin and r is only real
positive (z > 0 [56]). One observes that the amplitude a

r decreases proportionally
to 1

r , and at a long distance from the origin the spherical wave locally approximates
a plane wave [125].

15 Although Maxwell’s equations would allow either possibilities, we will put an additional
fact, that only the outgoing wave solution makes ”physical sense” [56]. Thus, in contrast to the
general solution by d’Alembert’s formula [20, § 1.3, Eq. (8)], [56, Eq. (20.24)], here we consider
the wave field propagation in the positive c direction only.
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1.3.3 Paraxial approximation and angular spectrum

It can be shown [79, 138] that the complex amplitude and spatial Fourier compo-
nents of the monochromatic wave field distribution can be decomposed by plane
waves travelling in different directions.

Let us consider the plane wave given by Eq. (1.22). Denote the angles between

the wave vector ~k and the Cartesian coordinate axes x, y and z by α, β and
γ, respectively (see Fig. 1.7). Then, cosα = kx

k , cosβ =
ky
k , cos γ = kz

k and
~k = k · (cosα · ~jx + cosβ · ~jy + cos γ · ~jz). Taking into account Eq. (1.23),

cos2 α+ cos2 β + cos2 γ = 1. (1.32)

It is of interest to describe paraxial waves whose propagation direction almost
coincides with the direction of the optical axis z (propagates in the positive z
direction), i.e. the angle γ is small, α and β are close to π

2 . Then, cos γ ≈ 1 and

cosα ≈ π

2
− α , α1, cosβ ≈ π

2
− β , β1. (1.33)

According to Eq. (1.32) the propagation direction is fully determined by only

two angles. The projections of the wave vector ~k onto the xz and yz planes are

equal to kxz =
√
k2
x + k2

z and kyz =
√
k2
y + k2

z , respectively (see Fig. 1.8). The

angles between these projections and the z axis αxz and βyz can be found from

sinαxz =
kx√
k2
x + k2

z

, sinβyz =
ky√
k2
y + k2

z

. (1.34)

Since for the paraxial approximation kz � kx, kz � ky and kz ≈ k

sinαxz ≈ kx
k

= cosα = sinα1, (1.35)

sinβyz ≈ ky
k

= cosβ = sinβ1,

Figure 1.8: The wave vector ~k and its projections onto the coordinate axes and coordinate
planes. In case of the paraxial approximation, the angles between the projections of ~k
onto the (x,z) and (y,z) planes and the z axis are close to π

2
−α and π

2
−β (see Fig. 1.7).
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what results in αxz ≈ α1, βyz ≈ β1. Therefore the plane wave can be describe as
a two-dimensional harmonic oscillation with the frequencies (kα1,kβ1) [138]

u(x, y, z) = a · eikzeik(α1x+β1y), a = const. (1.36)

In the Fourier decomposition of u the complex amplitude of the plane-wave

component with the angular frequencies (α1

λ ,β1

λ ) is U
(
α1

λ ,
β1

λ , z
)
dα1

λ d
β1

λ . The

two-dimensional Fourier transform of the function u across the xy plane

U

(
α1

λ
,
β1

λ
, z

)
=

∞∫∫
−∞

u(x, y, z) · e−i2π(
α1
λ x+

β1
λ y)dxdy (1.37)

is called the angular spectrum of the wave u(x, y, z).

1.3.4 Plane wave decomposition

Suppose that the complex amplitude of the wave field across the xy plane at the
distance z0 > 0 is given by u(x, y, z0), where its angular spectrum is of the form

U (kx, ky, z0) =

∞∫∫
−∞

u(x, y, z0) · e−i(kxx+kyy)dxdy. (1.38)

Here γ = 0. Note that the angular frequencies are chosen as kx = k cosα, ky =

k cosβ (cf. Eq. (1.37)). Let us calculate u(x, y, z0 + z)
∣∣∣
z=const

, the wave field

distribution at a parallel plane, which appears at the distances z from (to the
right of) the first plane. It is known that u(x, y, z0) must satisfy the Helmholtz
Eq. (1.21) at all source-free points [79]. Therefore, direct multiplication of Eq.
(1.21) by e−i(kxx+kyy) and its integration with respect to x and y shows that the
angular spectrum must satisfy the homogeneous second order differential equation
(see [138, Chapter III, §2] for the derivation)

d2

dz2
U (kx, ky, z) + (k2 − k2

x − k2
y) · U (kx, ky, z) = 0, (1.39)

yielding

U (kx, ky, z) = c1(kx, ky) · eiz
√
k2−k2

x−k2
y + c2(kx, ky) · e−iz

√
k2−k2

x−k2
y , (1.40)

where c1(kx, ky) and c2(kx, ky) are integration constants determined from the
boundary conditions. The first term in Eq. (1.40) corresponds to the direct,
outgoing wave, and the second term – to the incoming wave. Since the wave field
propagation is assumed to be taken in a homogeneous medium from the source in
the positive direction of z, the second term is equal to zero due to lack of sources
for the incoming wave, c2 = 0. Then

U (kx, ky, z0 + z)
∣∣∣
z=const

= c1(kx, ky) · ei(z0+z)
√
k2−k2

x−k2
y , (1.41)
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where c1(kx, ky) can be found from the initial condition at the plane z = z0

U(kx, ky, z)
∣∣∣
z=z0

= U (kx, ky, z0) = c1(kx, ky) · eiz0
√
k2−k2

x−k2
y . (1.42)

Thus, we arrive at

U (kx, ky, z0 + z)
∣∣∣
z=const

= U (kx, ky, z0) · eiz
√
k2−k2

x−k2
y , (1.43)

i.e. a layer of free space works as a filter, where the transfer function is of the form

Hz(kx, ky) = eiz
√
k2−k2

x−k2
y . (1.44)

Note that |H(kx, ky)| = 1, φ(kx, ky) = z
√
k2 − k2

x − k2
y for k2

x + k2
y ≤ k2.

For
√
k2
x + k2

y > k the module of the transfer function decreases according to

e−z
√
k2
x+k2

y−k2

, φ(kx, ky) = 0. Hence, a layer of free space behaves as a low-
pass filter with a finite bandwidth equal to k = 2π

λ . The wave components with
wavelengths less than λ are rapidly attenuated by the propagation phenomenon
with increasing of the distance z. Since the distances z and z0 are taken much
larger than a few wavelengths, we can completely drop the evanescent components
of the spectrum, i.e. exclude from our consideration the case of k2

x + k2
y > k2 [79].

The subindex “z” in Eq. (1.44) just emphasizes that Hz is a 2D transfer function
calculated for the space layer of the width z.

The inverse Fourier transform of Eq. (1.43) yields the plane wave decomposition
integral

u (x, y, z0 + z)
∣∣∣
z=const

= (1.45)

=
1

4π2

∞∫∫
−∞

U(kx, ky, z0) · (eiz
√
k2−k2

x−k2
y︸ ︷︷ ︸

U(kx,ky,z0+z)

∣∣∣
z=const

ei(kxx+kyy))dkxdky =

= F−1{F{u(x, y, z0)}(kx, ky) ·Hz(kx, ky)}(x, y),

which represents the wave field in free space u (x, y, z0 + z) as a superposition

of plane waves ei(kxx+kyy+z
√
k2−k2

x−k2
y) (cf. Eq.(1.36)) weighted by the complex

amplitude U(kx, ky, z0), where z0, z �0.
The 3D Fourier transform of a scalar function u(x, y, z) can be defined as

U (kx, ky, kz) =

∞∫∫∫
−∞

u(x, y, z) · e−i(kxx+kyy+kzz)dxdydz. (1.46)

Similar to Eq. (1.39), we apply the Helmholtz Eq. (1.21), but this time consider
the integration with respect to x, y and z. It results in

(k2 − k2
x − k2

y − k2
z) · U (kx, ky, kz) = 0, (1.47)
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i.e. the Fourier transform U (kx, ky, kz) must by equal to zero for the spatial
frequencies kx, ky and kz outside the sphere (1.23) known as Ewald’s sphere.

It should be noticed that the plane wave decomposition (1.45) is valid under
certain conditions related mainly to the existence and invertibility of the Fourier
transform of the wave field distributions at the mentioned transverse planes,
namely: the pairs u (x, y, z0), U (kx, ky, z0) and u (x, y, z0 + z), U (kx, ky, z0 + z).
We refer to, e.g., [79, Section 2.1.1], [130] for discussion on the existence and
sufficient conditions of the Fourier transform to be obeyed.

1.3.5 Rayleigh–Sommerfeld diffraction integral

In Section 1.3.4 we demonstrate that the wave field propagation phenomenon acts
as a linear space-invariant system described by a relatively simple transfer function
Hz. In many situations it is more convenient to define a layer of free spacenot by
the 2D transfer function using Eq. (1.44) or (in case of spatial frequencies v1 = kx

λk ,

v2 =
ky
λk ) using [79, cf. Eq. (3-74)]

Hz(v1, v2) =

{
exp(i 2π

λ z
√

1− λ2(v2
1 + v2

2)),
√
v2

1 + v2
2 <

1
λ

0, otherwise
, (1.48)

but with an impulse response, calculated as the inverse Fourier transform of Hz

hz(x, y) =
1

4π2

∞∫∫
−∞

eiz
√
k2−k2

x−k2
y · ei(kxx+kyy)dkxdky = (1.49)

=

∞∫∫
−∞

ei2π
z
λ

√
1−(λvx)2+(λvy)2 · ei2π(v1x+v2y)dv1dv2.

The expression describing the wave field in an arbitrary point (x,y,z0 + z)
∣∣∣
z=const

by the wave field at the transverse xy plane z = z0 is defined in the form

u(x, y, z0 + z)
∣∣∣
z=const

=

∞∫∫
−∞

u(ξ, η, z0) · hz(x− ξ, y − η)dξdη, (1.50)

where the impulse response of free space propagation

hz(x− ξ, y − η) =
1

iλ
cos θ · e

ikr

r

(
1− 1

ikr

)
, (1.51)

r =
√

(x− ξ)2 + (y − η)2 + z2

and cos θ = z
r describes the direction of radiation. θ = 0 corresponds to the

maximum of radiation and if θ = π
2 these is no radiation (see Fig. 1.9).

Note that the physical interpretation of the impulse response is a wave field
generated by a 2D point source. A common derivation of the impulse response
starts from the Green’s theorem [79, Eq. (3-14)] and a prudent choice of an
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Figure 1.9: Geometrical scheme of the diffraction problem. The wave field at the ξη
plane is localized only in the finite area denoted by S.

auxiliary function: a spherical wave as the Green’s function [20, 79] with the
Sommerfeld radiation condition (see, e.g., [79, Eq. (3-22)]).

Eq. (1.50) shows that the field u(x, y, z0 + z)
∣∣∣
z=const

is calculated as a two-

dimensional convolution between the initial (given) field u(ξ, η, z0) and the diffrac-
tion kernel (1.51). Therefore, the free space wave field propagation to the distance
z is represented as a linear shift-invariant system with the impulse response hz
[167, 168].

Note that the diffraction kernel hz has a circular symmetry with respect to
the z axis. The field of a 2D point source consists of two terms: the first term
describes the radiation field decaying as 1

r , and the second one – the induction
field decaying according to 1

r2 .
We are interesting in the radiation field. The expression for it can be found

assuming that 1− 1
ikr =

√
1 + 1

k2r2 e
i arctan 1

kr ≈ 1 for 1
kr � 1. It follows that even

for r ≈ λ the radiation field of a point source is hz ≈ z
iλ
eikr

r2 (hz ≈ eikr

iλr for the
paraxial approximation θ ≈ 0). Thus, the Rayleigh–Sommerfeld diffraction kernel
can be represented in the form

hz(x− ξ, y − η) =
z

iλ
· e

ikr

r2
, (1.52)

i.e. omitting the second term in brackets in Eq. (1.51), Eq. (1.50) can be rewritten
as follows

u(x, y, z0 + z)
∣∣∣
z=const

=
z

iλ

∞∫∫
−∞

u(ξ, η, z0)
eikr

r2
dξdη, (1.53)

what is known as the Rayleigh–Sommerfeld diffraction integral.
Despite the apparent differences of the angular spectrum decomposition (ASD)

method (Eqs. (1.43) and (1.45)) and the first Rayleigh–Sommerfeld (RS) solution
(Eq. (1.53)), these two approaches yield identical predictions of diffracted wave
fields [79]. The proof can be found, e.g., in [138, Chapter III.3] or [197].

1.3.6 Fresnel approximation

The Rayleigh–Sommerfeld diffraction integral (1.53) is quite complex, and it can
be essentially simplified using additional restrictions imposed on the interesting
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region of space. First of all, we note that the wave field at the plane z = z0 is, in
practice, localized in a finite region S16(see Fig. 1.9), so we can use finite limits
of integration

u(x, y, z0 + z)
∣∣∣
z=const

= (1.54)

=
z

iλ

∫∫
S

u(ξ, η, z0)
eik
√

(x−ξ)2+(y−η)2+z2

(x− ξ)2 + (y − η)2 + z2
dξdη.

We are considering the wave field at the xy observation plane parallel to the ξη
plane at the normal distance z to it. The size of the space layer is characterized by
the following important parameters: the size S of the initial wave field (source), the
distance between these planes and the lateral distances x, y from the longitudinal
axis z.

Let us assume that the wave field at the observation plane is many wavelengths
from the source (diffracting aperture), i.e. the distance between the points P0 and
P1 in Fig. 1.9 r =

√
(x− ξ)2 + (y − η)2 + z2 � λ [79]. Moreover, the distance

z > 0 is taken much larger than the maximum lateral dimension of the aperture
S [80]. Then, taking into account these assumptions, we can say that cos θ ≈ 117,
and r2 in the denominator of Eq. (1.54) is only slightly different from z2.

The component r in the exponent cannot be replaced by z, because the occur-
ring error is multiplied by the very large k . Then, the phase changes are much
larger than 2π, but these phase changes even by a fraction of a radian can result
in significant difference of the value of the exponent. Let us rewrite

r =
√

(x− ξ)2 + (y − η)2 + z2 = z ·
√

1 +
(x− ξ)2 + (y − η)2

z2
, (1.55)

where b = (x−ξ)2+(y−η)2

z2 < 1 is assumed to be small. In order to represent Eq.
(1.54) in a simpler and more usable manner, we use the approximation based on
the binomial expansion of the square root

√
1 + b = 1 +

b

2
− b2

8
+ ... (1.56)

Retaining only the first two terms of the expansion Eq. (1.56), we arrive at
the so-called Fresnel approximation

r ≈ z +
(x− ξ)2 + (y − η)2

2z
, (1.57)

and the approximation error does not exceed [(x−ξ)2+(y−η)2]2

8z3 , because the Tay-
lor series in the brackets in Eq. (1.56) is alternating. Taking into account that

16 Following [79] we have an infinite opaque screen with a hole of finite size, diffracting aperture
S at the ξη plane which is illuminated in the positive z direction.

17 with an accuracy better than 5% , if the angle θ is less than 18 degrees [80].
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u(ξ, η, z0) = 0 outside the region S, the resulting expression for the field at the
observation xy plane therefore becomes

u(x, y, z0 + z)
∣∣∣
z=const

= (1.58)

=
eikz

iλz

∞∫∫
−∞

u(ξ, η, z0)e
ik
2z ((x−ξ)2+(y−η)2)dξdη =

= {u(ξ, η, z0) ~ gz(ξ, η)}(x, y, z0 + z)
∣∣∣
z=const

,

what can be considered as the convolution of the function u(ξ, η, z0) with the kernel

gz(ξ, η) =
eikz

iλz
e
ik
2z (ξ2+η2). (1.59)

Another form of the result (1.58) is found if the term e
ik
2z (x2+y2) is factored

outside the integral signs, yielding [79, cf. Eq. (4-17)]

u
( x
λz
,
y

λz
, z0 + z

) ∣∣∣
z=const

= (1.60)

=
eikz

iλz
e
ik
2z (x2+y2)

∞∫∫
−∞

[u(ξ, η, z0)e
ik
2z (ξ2+η2)]e−i2π(ξ xλz+η y

λz )dξdη =

=
eikz

iλz
eiπλz((

x
λz )2+( yλz )2)F{u(ξ, η, z0)e

ik
2z (ξ2+η2)}

( x
λz
,
y

λz

)
,

which we recognize (aside from multiplicative factors) to be the 2D Fourier trans-
form of the product of the complex field just to the right of the diffracting aperture
by a quadratic phase exponential.

The results in the form of Eq. (1.58) and Eq. (1.60) are known as the Fresnel
diffraction integral.

Considering the approximation in the exponent (1.57), which is the most crit-
ical approximation, it can be seen that the spherical secondary wavelets of the
Huygens–Fresnel principle have been replaced by wavelets with parabolic wave-
fronts. Such an approximation imposes certain restrictions on the relative sizes of
S, the observation field at the xy plane and the distance z. A sufficient condition
for accuracy would be that the maximum phase change, induced by dropping the
b2/8 term, be much less than 1 radian, what is met if

z3 � π

4λ
[(x− ξ)2 + (y − η)2]2max. (1.61)

However, for the Fresnel approximation to yield accurate results, it is only nec-
essary that the higher-order terms of the expansion not change the value of the
Fresnel diffraction integral significantly [79]. If the distance z is small and the
condition (1.61) is not fulfilled, k/2z generally becomes large and oscillations of
the quadratic phase factor in Eq. (1.59) so fast that the major contribution to
the integral will come only from the points (ξ, η) close to (x,y) where the phase
changes are minimal [80]. To investigate the approximation error more completely,
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Figure 1.10: A circle of the radius c/2 and an ellipse with semi-axes c/
√

2 and c/2 which
is close to the circle.

let us consider the equal-phase surfaces of the functions eik
√

(x−ξ)2+(y−η)2+z2
and

eikze
ik
2z ((x−ξ)2+(y−η)2) determining by the identities (x − ξ)2 + (y − η)2 + z2 = c21

and z + (x−ξ)2+(y−η)2

2z = c2, respectively. The first identity represents a sphere of
radius c1 centred at the point (ξ,η). Let us rewrite

z +
ς2

2z
= c⇔ ς2

c2

2

+

(
z − c

2

)2(
c
2

)2 = 1, (1.62)

what gives an ellipse with semi-axes c√
2

and c
2 and centred at the point (0, c2 ). In

Eq. (1.62) and further in this Section ς2 = (x− ξ)2 + (y − η)2, then the spherical
surface can be of the form

ς2 + z2 = c21. (1.63)

In order to estimate the approximation error, we are considering the difference
of the surface given by (1.62) from the spherical surface (1.63). If these two
surfaces intersect with each other for x = ξ and y = η, then c = c1. In Fig. 1.10
the ellipse (1.62) and the circle ς2 + z2 = c2 are depicted. We use a spheroid as an
approximation for the spherical surface. Let us draw a line 0N through the center
of the sphere. 0N intersects the spherical and elliptical surfaces at the points N
and M , respectively. These surfaces are close to each other, when MN is small.
Taking into account that 0N = c, the coordinates of the point M is (ς,z) and
using Eqs. (1.56), (1.62) and (1.63) we arrive at

MN = 0N − 0M = c−
√
ς2 + z2 = (1.64)

= c− z ·
(

1 +
ς2

2z2
− ς4

8z4
+ ...

)
=

ς4

8z4
+ ....

According to the Rayleigh criterion, a spherical surface can be approximated
by an elliptical one if MN does not exceed one-tenth of the wavelength, i.e. in

our case ς4

8z3 ≤ λ
10 or

((x− ξ)2 + (y − η)2)2 ≤ 0.8z3λ ≤ z3λ. (1.65)

Let us consider the worst case when the inequality in Eq. (1.65) is satisfied.
Suppose that the region S is a rectangular of the size 2a×2b, then for x > 0, y > 0
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we take ξ = −a and η = −b. Let R =
√
a2 + b2 be a parameter characterized the

size of the radiation source and % =
√
x2 + y2 determines the position of the point

P1 at the xy plane. Let we replace ς by the larger value R + % ≥ ς. Thus, the
Fresnel diffraction integral in Eqs. (1.58) or (1.60) is valid when [138, Table III.1]

z ≥ 3

√
(R+ %)4

λ
,

what defines the lower limit for z. Taking into account that [83]

∞∫
−∞

e−iαx
2±iβxdx =

√
π

iα
· e
−β2

4iα , (1.66)

we can say that the transfer function Gz, corresponding to the Fresnel diffraction
kernel gz in Eq. (1.59), is of the form

Gz(v1, v2) =

∞∫∫
−∞

eikz

iλz
e
ik
2z (x2+y2) · e−i2π(v1x+v2y)dxdy = (1.67)

=
eikz

iλz

∞∫
−∞

e
ik
2z x

2−i2πv1xdx

∞∫
−∞

e
ik
2z y

2−i2πv2ydy =

= exp

(
i
2π

λ
z

)
· exp(−iπλz(v2

1 + v2
2))

or

Gz(kx, ky) = exp(ikz) · exp

(
−iz

k2
x + k2

y

2k

)
. (1.68)

Then, similar to Eq. (1.45),

u(x, y, z0 + z)
∣∣∣
z=const

= (1.69)

=
eikz

4π2

∞∫∫
−∞

ǔ(kx, ky, z0)e−
iz
2k (k2

x+k2
y)ei(kxx+kyy)dkxdky =

= eikz
∞∫∫
−∞

ǔ(v1, v2, z0)e−πiλz(v
2
1+v2

2)e2πi(v1x+v2y)dv1dv2 =

= F−1{F{u(x, y, z0)}(v1, v2) ·Gz(v1, v2)}(x, y),

what is met again for
√
v2

1 + v2
2 � 1

λ . Then the approximation error is negligible.
It implies that the angles of the plane wave decomposition α, β and γ are small

cos2 α =
k2
x

k2 � 1, cos2 β =
k2
y

k2 � 1, cos2 γ =
k2
z

k2 � 1. Hence only a small portion
of the field bandwidth is required to be covered, but the high-frequency details of
the wave field at the observation plane are lost (see Eq. (1.68)). It is recognized
that the Fresnel approximation for the transfer function is valid for [138]

(v2
x + v2

y)2
max

8k3
· z ≤ 0.1 · 2π, (1.70)



26 1. Preliminaries

what defines the upper limit for z.

1.3.7 Fraunhofer approximation

If the size of the radiation source S is small, and the distance z is significantly
large, then the terms of the second order with respect to variables ξ and η in
(x−ξ)2+(y−η)2

2z can be neglected as

(x− ξ)2 + (y − η)2

2z
≈ x2 + y2

2z
− xξ + yη

z
, (1.71)

and the expression for the wave field at an arbitrary point in free space can be
given as (cf. Eq. (1.60))

u

(
kx

z
,
ky

z
, z0 + z

) ∣∣∣
z=const

= (1.72)

=
eikz

iλz
e
ik
2z (x2+y2)

∞∫∫
−∞

u(ξ, η, z0)e−i(ξ
kx
z +η kyz )dξdη =

=
eikz

iλz
ei

z
2k (( kxz )2+( kyz )2)F{u(ξ, η, z0)}

(
kx

z
,
ky

z

)
,

what is known as the Fraunhofer approximation. Thus, the wave field at an ar-
bitrary point in the Fraunhofer approximation is proportionally to the Fourier
transform of the wave field at the plane z0:∣∣∣∣u(x, y, z0 + z)

∣∣∣
z=const

∣∣∣∣ =
1

λz

∣∣∣∣U (kxz , kyz , z0

) ∣∣∣∣. (1.73)

Neglecting the term ξ2+η2

2z , one assumes the maximum error (for a rectangular

region S) in phase equal to k a
2+b2

2z . Using the Rayleigh criterion, we obtain

k
a2 + b2

2z
≤ 0.1 · 2π, i.e. z ≥ 5

R2

λ
, (1.74)

where R =
√
a2 + b2 is (again) a parameter characterized the size of the radiation

source [138], what defines the (far-field) region for the Fraunhofer approximation.

1.4 Interferometric methods of light field recon-
struction

There are many methods to recover the complex amplitude of the wave field, often
quite sophisticated. For instance, the conventional setup of the Shack–Hartmann
wavefront sensor [97, 181, 195] is a 2D array of microleses (often called lenslets),
and the wavefront of the incident wave is determined via displacements of focused
spots, generated by an illuminated array of microlenses, from their reference posi-
tions as it is illustrated in Fig. 1.11. Since only tilts are measured, discontinuous
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Figure 1.11: Principle of the Shack–Hartmann wavefront sensor as a 2D array of mi-
crolenses (lenslets). Lenslet (typically) with the same focal distance correspond to the
reference positions of their focal points on a detector (CCD sensor). They focus light onto
different areas of detector pixels (focused spots) depending on the shape of the incident
local wavefront. The localized wavefront slope, and therefore the whole wavefront (ob-
ject phase), is calculated by measuring the displacements d of the focused spots from the
reference positions. The static lenslets may be replaced by diffractive optical elements
(DOE), e.g., a programmable spatial light modulator (SLM) [200].

Figure 1.12: Structured illumination method: an optical scheme of the observation model
[122]. An object is illuminated (at an angle θ) by parallel light stripes with sinusoidal
amplitude distribution g(x′, y′) = A(1 + cos vx′) and the resulting light amplitude distri-
bution on the object f(x, y) = A(1+cos[v(x cos θ+h(x, y) sin θ)]) is detected by a camera.
Here h(x, y) is the function describing the object profile, A = xmax − xmin and v is the
spatial frequency of the stripes. In [121] it is shown that the problem of recovering the
object profile based on its structured illumination coincides with the problem of phase
reconstruction via interferograms.
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steps in the wavefront can not be detected by the Shack-Hartmann sensor. How-
ever, the sensor can work using partially coherent light sources, which are gener-
ally cheaper than lasers [3]. The Shack–Hartmann sensor based approach seems
to be close to shearography by means of recalculation of the phase by spatial
displacement of the incident wavefront from the reference one. One uses a sim-
ple adjustment method, and the typical arrangement contains no moveable parts,
what leads to low demands regarding the mechanical stability and environment
noise. Moreover, an array of static lenslets may be replaced by a diffractive optical
element (see Section 1.5 and Appendix B.2), e.g., by a digital micromirror device
or a liquid crystal based spatial light modulator (LC-SLM).

A volumetric representation of an object, 3D shapes can be achieved by the
2D structured images of objects ([122], see Fig. 1.12): one distinguishes moiré
topography [213], the shear moiré topography [14], Fourier transform profilom-
etry [215], the phase profilometry [209]. These methods are very similar to the
conventional interferometry based methods: the Fourier transform method [214]
and the method of allocation of the centres of bands [237]. In this case there
is no strict restriction imposed on the light coherence. Despite the apparent (at
first glance) simplicity and low cost of the structured illumination based methods,
they have essential disadvantages: the sensitivity to background illumination, the
result significantly depends on the structure of the object and lighting conditions,
complexity of mathematical methods and computational algorithms [87].

In this thesis we consider two fundamental light coherence based approaches
used to determine the phase of light wave fields and reconstruct the complex object
amplitude: interferometric and phase-retrieval methods. They accumulate both
the relative simplicity of the optical system and the numerical methods. In this
Section we consider the established interferometric techniques, namely: phase shift
holography and shearography, linked by the common mathematical apparatus. In
Section 1.4.4 certain limitations of the interferometric methods are presented. In
the next Chapter 2 the phase-retrieval approaches are discussed.

1.4.1 Phase shifting method

The coherent superposition of two waves is the basic principle of all interference
based methods. Here we present the extraction of the phase information from a
set of observed interferograms obtained using the Michelson interferometer18 with
the phase shifting method (see [194]).

Let u1(x, y) and u2(x, y) be complex amplitudes of transverse wave fields, which
are linearly polarized in the same direction. Let u1 =

√
I1e

iφ1 and u2 =
√
I2e

iφ2

propagate in different directions as it is illustrated in Fig. 1.13. The resulting
interference pattern at the sensor plane can be found similarly to Eq. (1.8) I =
I1 + I2 + 2

√
I1I2 cos(∆φ), where ∆φ = φ2 − φ1 is the phase difference between

these two waves. Due to the ambiguity of the arguments of the cosine, the phase
difference cannot be directly determined from the measurement. However, the

18 An interferometer is an optical instrument that splits a wave into two waves using a beam
splitter: delays them by (in general) unequal distances, redirects them using mirrors, recombines
them using another (or the same) beam splitter, and detects the intensity of their superposition.
Three classical interferomenters, the Mach-Zehnder, Michelson and Sagnac interferometers, are
described, e.g., in [190, Chapter 2.5].
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Figure 1.13: A scheme of the Michelson interferometer, where BS denotes a beam split-
ter. Two complex amplitude u1 and u2 are propagated at different distances r1 and r2,
respectively, and superposed at the observation (sensor) plane.

complex amplitude u1 can be found from a number of recorded interferograms by
shifting the phase of u2 [67, 228]. The phase shift is often realized by translating
a mirror of the optical setup in Fig. 1.13 via piezoelectric transducers. Thus, the
intensities of interference pattern is defined as

Ir(x, y) = |u1(x, y) + u2(x, y) exp(iθr)|2 = I1 + I2 + (1.75)

+ u∗1(x, y)u2(x, y) exp(iθr) + u1(x, y)u∗2(x, y) exp(−iθr), r = 1, ...K,

where {θr} are phase shifts of u2. In order to reconstruct the term u1(x, y), which
can represent the object wavefront, K holograms are summed up with the same
phase shifts used during their recording [236]

Ī(x, y) =
1

K

K∑
r=1

Ir(x, y) exp(iθr) = u1(x, y) · u∗2(x, y) + (1.76)

+(|u1(x, y)|2 + |u2(x, y)|2) · 1

K

K∑
r=1

exp(iθr) +

+(u∗1(x, y) · u2(x, y)) · 1

K

K∑
r=1

exp(i2θr).

It can be shown that at least three exposures {Ir}3r=1 (e.g., with phase shifts
θr = {0, 2π/3, 4π/3}) are required in this method. Assume that θr = rθ0 ∀ r. For
a perfect reconstruction of the first term u1(x, y) · u∗2(x, y) phases {θr} should be
found from the following expressions [83]

K∑
r=1

exp(irθ0) =
exp(iKθ0)− 1

exp(iθ0)− 1
exp(iθ0) = 0, (1.77)
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K∑
r=1

exp(i2rθ0) =
exp(iKθ0)− 1

exp(iθ0)− 1

exp(iKθ0) + 1

exp(iθ0) + 1
exp(iθ0) = 0. (1.78)

The solution for Eq. (1.77) is θr = 2π r
K for any integer K ≥ 3. For K = 2 the

solution θ0 = π does not satisfy Eq. (1.78) as [83]

exp(i2θ0)− 1

exp(iθ0)− 1

exp(i2θ0) + 1

exp(iθ0) + 1
exp(iθ0) = 2. (1.79)

Thus, the complex-valued wave field u1 can be therefore found by, e.g., three or
four holograms exposures. Let {Ir} be the interferograms with the corresponding
phase shifts θr = {0, π2 , π,

3π
2 } for r = {0, 1, 2, 3}, respectively. Then

u1(x, y) =
I0(x, y)− I2(x, y) + i[2I1(x, y)− I0(x, y)− I2(x, y)]

4u∗2(x, y)
, (1.80)

u1(x, y) =
I0(x, y)− I2(x, y) + i[I1(x, y)− I3(x, y)]

4u∗2(x, y)
. (1.81)

Note that the intensity distribution of the interferograms can be also repre-
sented in the form (cf. Eq. (1.75))

Ir(x, y) = I1(x, y) + I2(x, y)︸ ︷︷ ︸
IDC(x,y)

+ 2
√
I1(x, y)I2(x, y) cos(∆φ(x, y) + θr), (1.82)

thus, the (wrapped) phase difference can be found, e.g., using four shifts as

W{∆φ(x, y)} = arg{I0(x, y)− I2(x, y) + i(I3(x, y)− I1(x, y))}. (1.83)

1.4.2 Digital holography

First experiments in numerical reconstruction of optical holograms date back to
the late 1960s – early 1970s [78, 127]. The widespread use of computers and re-
placement of photographic plates by a CCD sensor is considered to be an origin of
digital holography: numerical wave field reconstruction in digital holography be-
came properly available only since its practical confirmation (starting from 1994,
[192]). A quick and effective method for both the wave field reconstruction and reg-
istration was necessary, and CCD based systems showed its efficiency and usability:
all data could be sent direct to a computer without any additional operations.

A typical scheme of recording a digital hologram is illustrated in Fig. 1.14. A
plane laser beam is divided by a beam splitter19 (BS) into two beams: a reference
beam, which falls directly onto a digital sensor (uref ), and an object beam, which
illuminates an object and after being scattered from the investigating object, also
travels to the sensor (uobj).

The numerical reconstruction of the hologram consists of applying to the
recorded hologram (1.9) a transform that implements the backward wave field

19 It is assumed that a beam splitter reflects 50% of the incident light and transmits the other
50% [125].
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Figure 1.14: Schematic diagram of a digital holographic setup with the Mach–Zender
interferometer. The intensity of the interference patterns, generated by superposed object
(diffracted by an object) and (unchanged) reference beams, is detected on a sensor.

propagation from the sensor plane to the object plane. Recall that the holo-
gram exposure I contains a zero order DC term of diffraction and two conju-
gated (twin virtual and real) images. In order to obtain the complex-valued
object wave field, one has either to eliminate other three terms before the re-
construction or apply the reconstruction transform to the entire hologram and
only than extract the interesting term. The latter solution is known as the so-
called off-axis recording hologram (the classical Leith-Upatnieks’s method, see,
e.g., [79, 80, 125, 190, 194, 232, 234, 236]). Typically it can be found using the
first Rayleigh–Sommerfeld diffraction integral20 as [192, cf. Eq. (1)], [194, cf. Eq.
(3.1)]

Γ(ξ, η) =
iz

λ

∫∫
I(x, y)uref (x, y)

exp(−ikr)
r2

dxdy, (1.84)

where r =
√

(ξ − x)2 + (η − y)2 + z2 is the distance between a point in the holo-
gram plane and a point in the reconstruction plane, z is the distance between the
object and sensor planes. In off-axis holography [132, 133], a spatial offset angle
between the reference and object beams is introduced. When this angle exceeds
a minimum allowable angle (discussed in, e.g., [79, § 9.4.3]), the twin images are
not contaminated by each other nor by other, say DC, wave components. Thus,
the object wave field is extracted.

The method of eliminating interfering terms in recorded holograms before the
reconstruction is called on-axis or in-line holography21. In the on-axis method
of recording holograms the object and reference beams are collinear, and several
exposures of holograms {Ir}Kr=1 of the object are recorded with phase shifting
{θr}Kr=1 of the reference beam as it is discussed before. This method can be
realized via the mentioned phase shifting method using a moveable mirror or a
spatial light modulator (digital phase shifting holography [228, 230]). In this case
the recorded holograms are of the form:

20 see Section 1.3.5
21 Note while Gabor had no sources giving light with sufficient coherence, he had to produce

in-line holograms where object and reference waves were travelling in the same direction orthog-
onally to the hologram. Leith and Upatniks were the first who took advantage of the coherence
of laser light and who gave the object and the reference beams different directions [125].



32 1. Preliminaries

Ir(x, y) = |uobj(x, y) + uref (x, y) exp(iθr)|2 = (1.85)

= |uobj(x, y)|2 + |uref (x, y)|2 + u∗obj(x, y)uref (x, y) exp(iθr) +

+uobj(x, y)u∗ref (x, y) exp(−iθr), r = 1, ...K.

Note that the wave u1 in Eq. (1.75) can be interpreted in terms of in-line
holography as the object beam, u2 – as the reference beam, and the fixed mirror
in Fig. 1.13 represents (could be replaced by) the investigating object. Therefore,
the complex amplitude of the wave field uobj at the observation plane can be
found according to, e.g., Eqs. (1.80)–(1.81), and the phase difference is calculated
similar to Eq. (1.83). If the complex-valued uobj at the sensor plane is extracted
the wave field at the object plane is obtained by applying the backward diffraction
propagation, e.g., as hz ~ uobj , where hz is the RS diffraction kernel (1.52).

1.4.3 Shearography

Digital phase shifting holography has a very widespread application, especially for
nondestructive deformation detection and remote testing [16, 169], measurement
of surface shapes [157, 229], study of material properties [199] and vibrational
processes [177]. The conventional and digital holographic interferometry are very
high sensitive to optical path changes. This high sensitivity is a drawback for
applications in a rough environment, where no vibration isolation is available.
Unwanted optical path length variations due to vibrations disturb the recording
process [194].

Shearography is an interferometric method, where holograms (interferograms)
are generated by superposing of the investigating wave field with its copy, but
now slightly spatially shifted (see landmark works by Hung [102, 103] and also
[52, 54, 125, 194]). Since only the spatial variations of the displacement in a
predetermined direction are measured, the methods are rather insensitive to rigid
body motions. In general shearography may be employed to completely recover
the complex amplitude of an arbitrary wave field [54]. This method is often used
for nondestructive deformation detection.

The shifting of the wave fields is performed by a shearing elements, e.g., a glass
wedge in front of one half of the imaging lens, two tilted glass plates, a double
refractive (Wollaston) prism [103, 125], or a Michelson interferometer-like arrange-
ment [52, 102] with one mirror slightly tilted (see Fig. 1.15). Depending on the
used recording medium one distinguishes photographic (photographic emulsions)
or digital shearography (computerized process with the use of CCDs). The devel-
oped phase shifting technique allows the determination of phase distributions in
digital shearography to be automated (phase shift shearography).

Let we consider the basic principle of shearography in terms of phase shifting
shearography with a Michelson interferometer-like arrangement. In Fig 1.15 two
wave fields (again), the object u1 and reference u2 are superposed at the sensor
plane. The role of this reference wave u2 is taken by one of the two mutually tilted
(at the xz plane) object wave fields, called self-reference. In this case, according to
the principle of superposition, at the sensor plane we have the following complex
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Figure 1.15: Arrangement for digital shear interferometer. The input object wave is
divided by a beam splitter (BS), so two wave, the object u1 and so-called self-reference
wave u2, travel along different ways and superpose at the sensor plane. Since the fixed
mirror is here tilted in the xz plane, u1 is shifted on a sensor by d.

amplitude:

u(x, y) = u1(x, y) + u2(x+ d, y) = (1.86)

=
√
I1(x, y)eiφ(x,y) +

√
I2(x+ d, y)eiφ(x+d,y),

where the spacing between the two correlated areas of the object surface d is
called the share. The shearographic image (interference pattern of u) may be
mathematically represented [52, 102, 103, 125] as follows [54, cf. Eq. (3)]

I(x, y) = I1(x, y) + I2(x+ d, y)︸ ︷︷ ︸
IDC(x,y)

+ 2
√
I1(x, y)I2(x+ d, y)︸ ︷︷ ︸

Im(x,y)

· cos(ϕ(x, y)), (1.87)

where ϕ(x, y) = φ(x, y) − φ(x + d, y) is the phase difference due to shearing,
IDC(x, y) is again the DC term as in Eq. (1.82) and Im(x, y) is a modula-
tion of the interference. Deformation of the object results in the wave fields√
I1(x, y)ei(φ(x,y)+∆φ(x,y)) and

√
I2(x, y)ei(φ(x+d,y)+∆φ(x+d,y)) and their superpo-

sition yields [103, cf. Eq. (2)]

I ′(x, y) = IDC(x, y) + Im(x, y) cos(ϕ(x, y) + ∆ϕ(x, y)), (1.88)

where ∆ϕ(x, y) denotes a phase change due to the object surface deformation.
According to the described phase shifting method with four phase shifts θr =
{0, π2 , π,

3π
2 } one records four exposures Ir(x, y) = IDC(x, y)+Im(x, y) cos(ϕ(x, y)+

θr) and I ′r(x, y) = IDC(x, y)+Im(x, y) cos(ϕ(x, y)+∆ϕ(x, y)+θr) for these phase
shifts, r = {1, 2, 3, 4}. Then, the phase differences can be found similar to Eq.
(1.83) as [54, cf. Eq. (5)]

W{ϕ(x, y)} = arg{I0(x, y)− I2(x, y) + i(I3(x, y)− I1(x, y))}, (1.89)
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and the process is repeated for the deformed patterns, yielding [54, cf. Eq. (5)]

W{ϕ(x, y) + ∆ϕ(x, y)} = arg{I ′0(x, y)− I ′2(x, y) + i(I ′3(x, y)− I ′1(x, y))}. (1.90)

Therefore, the phase change due to the deformation ∆ϕ(x, y) is subsequently
determined by subtracting of the unwrapped phase ϕ(x, y) + ∆ϕ(x, y) from the
unwrapped ϕ(x, y) [102, 103].

1.4.4 Limitation of interferometric techniques

Let us summarize certain limitations of the interferometric (holographic) methods:

• Since these methods are based on the superposition principle, they have an
essential demand regarding the temporal/spatial coherence. The insufficient
coherence leads to poor imaging of interference patterns (the additional in-
terference component of Eq. (1.8) is small).

• The superposition of two waves requires considerable efforts to align optical
components on an optical system, and the proper alignment is very time
consuming and troublesome. In some cases it is very difficult to realize
fitting and fine overlapping of the investigating object wave uobj ≡ u1 with
the reference wave uref ≡ u2 [3].

• Since these two waves travel along their separate paths, the result of measure-
ments is high sensitive to various environmental disturbances as vibrations
or thermal fluctuations. Thus, the experimental configuration must be iso-
lated from vibration to a large extent. In particular, it is of importance
for temporal phase shifting, because the mechanical stability over the entire
period of measurement must be ensured [3].

• Experimental arrangements for interferometric methods are technically quite
complex and therefore expensive due to the use of many optical components
such as beam splitters, lenses, etc. Moreover, the more complex optical
system, the more sources of various distortions to be compensated.

1.5 Diffractive optical elements (DOEs)

The phase change can be easily realized using not a moveable mirror but diffractive
optical elements, e.g., with LC-SLMs, by the modulation of a light wave field.
Let us consider the modulating optical elements which help realizing the linear
operations to obtain a desired wave field distribution for various applications.

The modulating optical systems may contain both classical optical elements,
such as lenses, prisms or beam splitters, and quite sophisticated ones with a fixed
profile/relief or reconfigurable (electronically controlled) structure. The light mod-
ulation in such an optical system is primarily based on diffractive media which
transform either the amplitude or phase of the incident beam.

One of the straightforward applications of such modulating optical elements is
the wave field synthesis/design, i.e. generating of a desired volumetric light wave
field distribution within a region of interest in 3D space.
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1.5.1 DOEs with fixed profiles

The first modulating optical element, called diffractive optical element (DOE), is a
diffraction grating constructed more than two hundreds years ago [207]. It had bi-
nary amplitude or phase transmittance and looked like a transmissive or reflective
plate with a thin microrelief, calculated according to the diffraction theory. For
instance, the simplest amplitude one-dimensional diffraction grating is a flat opti-
cal transparency22 with alternate light and dark stripes of the same width d. After
one-dimensional binary amplitude and phase diffraction gratings one constructed
two-dimensional radially-symmetric gratings (zone plates). The essential develop-
ment of diffraction optics was held back by the absence of suitable materials and
technologies of their processing which would have allowed accurate constructing
of diffraction patterns with a complex surface/profile. The use of computers made
a revolution in the creation of DOEs: in the late 1960s computers were used for
the synthesis of holograms of mathematically determined objects. First computer
generated holograms were again binary, invented by Lohmann [23, 24, 139]. They
were printed on a computer line printer, then optically reduced and reconstructed
in optical setups using coherent laser illumination [233]. The recording medium
was represented in the form of square cells. A full transparent opening inside each
cell modulates both the amplitude (by the size of the opening) and phase (by
a shift of the opening within cells) of the desired object [221], [236, Lecture 5].
Then, the use of more sophisticated devices capable of recording grey scale images
was suggested for recording computer generated holograms [128]. In addition, the
key problem of coding – recording on a physical medium complex-valued functions
and construction of corresponding amplitude-phase transparencies – has been re-
solved. Progress in microelectronics and laser technology gave in the 1980s the
photoplotter and electron-beam lithography, what made the problem of creation
of DOEs with a complex profile practically realizable, e.g., creation of DOEs with
unique characteristics, unattainable in the traditional optics, such as focusators of
laser beam.

1.5.2 Reconfigurable DOEs: spatial light modulators (SLMs)

Generally, DOEs can be specified by the numeric value (binary and with a complex
profile), amplitude-phase characteristics of the transmission function (amplitude,
phase, or complex-valued) and by the specifics of their microrelief: the linear
or circular gratings, zone plate/kinoform lens, computer generated hologram and
spatial light modulator (see, e.g., [207, 236] for more details).

Spatial light modulators (SLMs) are reconfigurable DOEs, which give a sig-
nificant flexibility of the optical system to modulate the light wave field and find
very widely application of light wave field synthesis. SLMs are based on liquid
crystals, microelectromechanical systems or magneto- and acusto-optic modula-

22 If such a grating is illuminated by the monochromatic light beam with the wavelength λ,
which is incident normal to the plane of the grating, a number of light beams will be formed as
the result of diffraction on a periodic structure of stripes. These beams will travel at different
angles θp corresponding to various diffraction orders. The angle θp depends on the grating period
d, and assuming that the angles are small θp = pλ

d
, where p = 0,±1,±2... The light intensity

changes in the inverse proportion to p as I(θp) ∼ ( 2λ
πdθp

sin(πd
2λ
θp))2 ≈ 1

(2p+1)2
[207].
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tors (see [47, 101, 159] for mode details). Digital micromirror devices (DMDs) are
a type of such a reconfigurable devices which modulate an incident wave by reflec-
tion [221]. These devices consist of a large 2D array of electronically controlled
micromirrors taking one of a few present angles [43]. In [124] one of pioneering
works, where DMDs are used to reconstruct a binary hologram, is presented. A
holographic 3D image projection by DMD is presented in [100]. At present time,
one uses typically the electronically reconfigurable SLMs23, and commodity SLMs
are primarily based on liquid crystals. The main principle of LCs, and therefore
liquid crystal based SLMs (LC-SLMs), is based on birefringence, i.e. the refractive
index of liquid crystals depends on the orientation of molecules of LCs, which,
in turn, can be controlled by apply an electrical charge. In general one distin-
guishes optically and electrically addressed LC-SLMs depending on the way the
electrical charge is applied to a LC. The optically addressed SLMs use incoherent
light to control the orientation of the liquid crystal molecules. The intensity of
the incoming incoherent light is sensed by a photo-sensor, which transforms the
light intensity into an electrical charge directly over the liquid crystal. In electri-
cally addressed SLMs the voltage to the liquid crystals is applied via an electrodes
connected with a silicon chip of pixel cells.

The structure of DOEs or data which is required to be programmed on SLMs
are commonly calculated by iterative projection methods (see, e.g., [121, 122, 207,
238]) derived based on the mentioned Gerchberg–Saxton algorithm [71]. This
algorithm can be used to specify the desired volumetric wave field [203]. In [11]
the amplitude and phase are tried to be separately controlled by two phase-only
SLMs (double-phase hologram for the complex modulation). SLMs (and more
generally DOEs) may be used extensively in holographic data storage [90, 210],
optical computing and imaging [12, 15, 86] and as a component of a holographic
display technology [25, 126, 172]. They also often find application in phase-contrast
microscopy and holographic optical tweezers [131, 161, 176, 187]. For instance, the
Shack–Hartmann wavefront sensor illustrated in Fig. 1.11 can be realized using a
DMD or an LC-SLM. Typically there are LC-SLMs for the amplitude- and phase-
only modulations.

The structure of an LC-SLM in the used 4f optical system and the resulting
transfer function of a phase modulating SLM is presented in Appendix B.2.

23 Note, however, that DMDs are still very attractive as they provide higher contrast ratio,
brightness and optical efficiency comparing to SLMs [221].



Chapter 2

Introduction to phase
retrieval

Previously, in Section 1.4, the recovering quantitative phase information from in-
terference patterns by interferometric (holographic) techniques is considered. In
this Chapter we deal with the diffraction propagation of a light wave field, where
each point of the illuminated object is a source of interfering secondary wavelets.
The so-called phase retrieval is an alternative approach used to estimate the phase
of a complex-valued light wave field from a number of the spatial intensity measure-
ments of diffraction patterns at different observation planes. The main advantage
in comparison with the conventional interference based methods is that no dis-
tinct reference wave is required. Thus, phase retrieval has relatively low demands
regarding both the coherence of light and the mechanical stability of the experi-
mental arrangement [3]. Moreover, the optical system for phase-retrieval methods
are often simpler, more robust with respect to disturbances such as vibration and,
what is also important, cheaper comparing with interferometric methods with a
reference beam. In other hand, the complex-valued wave field and, in particular,
the phase can not be computed so straightforward as before: see Eqs. (1.80)–
(1.81) and (1.83). Let us overview the used diffraction propagation model and the
conventional phase recovering techniques more in detail, and consider the author’s
contribution in the development of parallel iterative phase-retrieval algorithms.

2.1 Plane-to-plane propagation modeling

A typical setup of the diffraction wave field propagation is illustrated in Fig. 2.1.
Let a plane laser beam illuminates an object, and being scattered by it (or passed
through a transparent object) travels in the direction to a sensor along the optical
axis z. The light wave field which appears immediately after the object is typically
called the object wave field [79, 80] denoted hereafter by u0(ξ, η). The correspond-
ing ξη plane, where the transverse u0 is defined, is called the object plane. This
object wave field, propagated to a sensor according to the Huygens–Fresnel princi-
ple, results in the diffracted wave field uz(x, y) at the observation plane. The link

37
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Figure 2.1: Propagation model of the diffracted wave field. The transverse ξη object
plane is parallel to the observation xy plane at the distance z from it. The link between
the object u0(ξ, η) and sensor uz(x, y) wave fields is defined in the convolutional form
by uz(x, y) = {u0 ~ az}(x, y), where az denotes a shift-invariant diffraction kernel of the
forward wave field propagation from the object to the observation/sensor plane.

between these two transverse wave fields in terms of the scalar diffraction theory
is formulated with the used plane-to-plane propagation model as follows

uz(x, y) = {u0 ~ az}(x, y) =

∞∫∫
−∞

u0(ξ, η) · az(x− ξ, y − η)dξdη, (2.1)

where az is a shift-invariant diffraction kernel1 of the wave field propagation from
the object to the sensor plane and the subindex z emphasizes the propagation
distance between these planes.

If the complex amplitude uz(x, y) at the sensor plane is given (e.g., from a
number of hologram exposures {Ir}), the object wave field is calculated by the
backward wave field propagation from the sensor to the object plane. If the diffrac-
tion kernel az is invertible, the estimate of the complex-valued transverse wave field
at the object plane û0 is calculated as

û0(ξ, η) =

∞∫∫
−∞

uz(x, y) · a−z(x− ξ, y − η)dxdy, (2.2)

Eq. (2.1) can be represented via a linear diffraction operator uz(x, y) =
Dz{u0}(x, y) = {u0 ~ az}(x, y), and the object reconstruction according to Eq.
(2.2) – via the inverse operator û0(ξ, η) = D−1

z {uz}(ξ, η) = {uz ~a−z}(ξ, η). Note
that the size of the detector (photographic plate, CCD sensor) is finite. The esti-
mate û0(ξ, η) is perfect (precise for any u0, û0 = u0) only if uz(x, y) is given for
the whole transverse xy plane, i.e. the detector is of infinite size [125]. The finite
size of the sensor (given measurements) may lead to the ill-posedness of the inverse
problem of the object wave field u0 reconstruction and, as the result, to corrupted
(e.g., blurred) wave field reconstructions. Note also, that the observations (e.g.,
{Ir}) are generally noisy due to various disturbances of the optical path such as

1 The diffraction propagation for the near-field zone is typically defined by the Rayleigh–
Sommerfeld solution of the Maxwell–Helmholtz equation or its Fresnel approximation, see Section
1.3.5 and 1.3.6.
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Figure 2.2: An experimental configuration for multi-plane phase retrieval. The intensity
of the light wave field scattered by an object is recorded across a sequence of different
observation planes using a sensor which moves along the optical axis z. Here the object
wave field is denoted by u0 and the intensity observations {|ur|2}, r = 1, ...K are obtained
at the distances zr = z1 + (r − 1) ·∆z, where z1 is the distance between the object and
the first measurement plane and ∆z is the fixed distance between following transverse
observation planes.

vibration, dust and so on. In addition, the problem of the object wave field recon-
struction is complicated due to nonlinearity of the computation (unwrapping) of
the object phase (see Eq. (1.83)).

2.2 Free space diffraction propagation models

The straightforward experimental setup for recording the result of the free space
diffraction propagation to different distances {zr} can be realized by a moveable
sensor as it is illustrated in Fig. 2.2 or [7, Fig. 1]: a CCD camera is sequentially
moved between K measurement planes (separated by a distance ∆z) using a mo-
torized precision stage. Here the wave field propagation through the space layer
of the width zr can be described via the (say, ASD, Eq. (1.48)) transfer functions
or (e.g., RS (1.52) or Fresnel (1.59)) diffraction kernels. If the diffraction opera-
tor Dzr corresponding to the forward wave field propagation to the distance zr is
invertible (in particular, in [197] it is shown that the RS diffraction operator Dzr
is invertible) and the complex-valued wave field ur(x, y) at the r-th sensor plane
is given, one can reconstruct the wave field at the object plane with the inverse
diffraction operator D−1

zr , namely û0(ξ, η) = D−1
zr {ur}(ξ, η) by various methods.

One distinguishes the following conventional continuous methods of the complex-
valued wave field reconstruction [125]

• reconstruction via the Rayleigh–Sommerfeld diffraction integral (zr � λ,
con. Eq. (1.52))

ur(x, y) = F−1{F{u0}(v1, v2) · F{hr}(v1, v2)}(x, y), (2.3)

û0(ξ, η) = F−1{F{ur}(v1, v2) · (F{hr}(v1, v2))∗}(ξ, η);

• reconstruction via the angular spectrum decomposition (con. Eq. (1.45))

û0(ξ, η) = F−1{F{ur}(v1, v2) ·H∗r (v1, v2)}(x, y); (2.4)
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• reconstruction with the Fresnel approximation of the diffraction kernel (zr �√
ξ2 + η2, con. Eq. (1.59))

ur(x, y) = F−1{F{u0}(v1, v2) · F{gr}(v1, v2)}(x, y), (2.5)

û0(ξ, η) = F−1{F{ur}(v1, v2) · (F{gr}(v1, v2))∗}(x, y);

• reconstruction via the Fresnel approximation in terms of chirp functions2(con.
Eq. (1.60))

û0(ξ, η) =
e−ikzr

−iλzr
e
−ik
2zr

(ξ2+η2)F−1{ur
(

x

λzr
,
y

λzr

)
e
−ik
2zr

(x2+y2)}(ξ, η); (2.6)

• reconstruction using the Fresnel transfer function (con. Eq. (1.69))

û0(ξ, η) = F−1{F{ur}(v1, v2) ·G∗r(v1, v2)}(x, y). (2.7)

The subindex r emphasizes the calculation of the transfer functions (Hr, Gr)
and diffraction kernels (hr, gr) of the diffraction wave field propagation to various
distances {zr}Kr=1, r = 1, ...K. Note that, the free space wave field propagation
can be also imitated by the 4f configuration using a phase modulating LC-SLM
[4, 53] (see Section 5.1).

2.3 Inverse problem of phase retrieval

Phase retrieval is exploited in many engineering and scientific areas as astronomy
[36, 63], crystallography [73, 96, 153], microscopy [71, 155] aberrations estima-
tion/correction [62, 174], diffraction and 3D imaging, tomography, remote sensing,
nondestructive testing, material analysis to name just a few. We refer to the books
[104, 211] and review articles (e.g., [59, 107, 119, 140]) for descriptions of various
instances of the phase-retrieval problem and further references.

From the mathematical point of view, recovering the phase information can be
stated as an inverse problem [91, 109], where the measured intensities of diffraction
patterns represent the observed effect caused by (aside from the amplitude) a
unknown object phase. Since the wave fields at the sensor planes are assumed to
be generated by radiation from the object plane, in this thesis the reconstruction
of the phases, missed in measurements, is produced through the object plane
distribution considered as the only unknown variable. Following Eq. (2.1), the
problem of multi-plane phase retrieval can be formulated as [91]∣∣∣∣ur(x, y)

∣∣∣∣2︸ ︷︷ ︸
output

=

∣∣∣∣
∞∫∫
−∞

u0(ξ, η)︸ ︷︷ ︸
input

· ar(x− ξ, y − η)︸ ︷︷ ︸
system

dξdη

∣∣∣∣2, r = 1, ...K, (2.8)

2 A chirp is a signal in which the frequency of oscillations linearly increases/decreases de-
pending on the spatial coordinates [125, Chapter A.13]. The exponential one-dimensional chirp
function of infinite support can be presented as c(t) = exp(iαπt2) with its Fourier transform

as again a scaled chirp function with a constant amplitude F{c(t)}(v) = i√
α

exp(−π v
2

α
). This

function got its name from applications in testing transmission systems for acoustic signals, and
is of the extensively usage in diffraction theory.
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where the investigating complex-valued object u0 is the input of the optical system
and the diffraction kernels {ar}Kr=1 give the mathematical description of the used
coherent imaging system of the wave field propagation at different distances from
the object plane {zr}r. In contrast to Eq. (2.1), we use here the subindex r to
emphasize various distances of the diffraction propagation. In this formulation,
the direct problem is to compute the output – a number of intensity observations
{|ur|2} as the result of the forward wave field propagation of the object wave field
u0 to distances {zr}r (see Section 2.2), the output of the optical system for various
settings. The goal of the inverse problem is to determine the input of the system
that gives rise to the (noisy) measurements of the output [91]. Note that since
the phase φr of the wave field at the r-th sensor plane ur = |ur|eiφr is absent, the
integral in Eq. (2.8) can not be directly inverted (similar to Eq. (2.2)).

2.4 Overview of phase-retrieval techniques and our
contribution

In the past decades, the inverse problem of phase retrieval is treated in two fun-
damentally different ways: by deterministic or iterative approaches.

2.4.1 Deterministic phase retrieval

The deterministic approaches are based on the so-called transport-of-phase [217,
cf. Eq. (5)] and transport-of-intensity (TIE, [217, cf. Eq. (4)]) equations origi-
nated by Teague [216, 217, 218]. The main idea is to derive formulas which describe
a one-to-one relation between the measured intensity and the undetected phase.
These formulas are calculated via physical properties of the light waves, mainly
directly from the Maxwell–Helmholtz wave equations (see, e.g., [120]), typically
provided the light wave propagation in only one direction, say along the z axis. In
addition, TIE based methods are widely used to define the phase of a monochro-
matic light field [120, 218]. The phase of a wave field is shown to be retrieved by
computing the axial intensity derivative ∂

∂z I(x, y, z), and the direct solution can
be found from two [217] or multiple defocusing images [6, 206]. Note that since
the intensity derivative can not recorded directly, it is obtained by the central,
forward and backward finite differences [206, cf. Eqs. (1)]:

∂

∂z
I(x, y, z = 0) =

I(x, y,∆z)− I(x, y,−∆z)

2∆z
, (2.9)

∂

∂z
I(x, y, z = 0) =

I(x, y,∆z)− I(x, y, 0)

∆z
, (2.10)

∂

∂z
I(x, y, z = 0) =

I(x, y,−∆z)− I(x, y, 0)

−∆z
. (2.11)

The conventional image is denoted by I(x, y, z = 0) and (also measured) diversity
images are {...I(x, y,−∆z), I(x, y,∆z), ...}. In Fig. 2.3 the recording process of
the phase-diversity images is illustrated.

The phase diversity incorporates the additional information on the wave field
propagation and allows improving the phase imaging by multiple measurements
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Figure 2.3: Optical layout of a phase-diversity system. If the conventional image is de-
graded by aberrations in the optical system, the phase-diversity images will be therefore
degraded by the combination of the same aberrations and a known amount of defocus.
The reconstruction is performed by a number of diversity images recorded at different dis-
tances z by various defocusing ±∆z,±2∆z, .... Dashed lines in the right image represent
the positions of a sensor to measure the diversity images [6, 171, 174, 202].

with various defocusing ∆z [206]. We refer to [120] for the phase gradient based
method and to the mentioned works by Teague and [3, 6, 171, 174, 202] for the
additional details.

TIE based techniques are relatively fast, computationally efficient and can be
implemented in many existing systems. Nevertheless, their are very sensitive to
inaccuracy of the optical setup such as misalignment at the xy plane, misfocusing
(with respect to z) and noise. In general, TIE based techniques are recognized to
fail in the case of a significant large amount of noise [171, 224].

2.4.2 Iterative phase retrieval

Perhaps the first efficient iterative algorithm for phase retrieval is originated by
Gerchberg and Saxton [71], initially for a single measurement plane. It is shown
in Section 1.3.7 that the wave field propagation to the far field, the Fraunhofer
region, is proportional to the Fourier transform (see Eqs. (1.72)–(1.73)). Origi-
nally, the Gerchberg–Saxton (GS) algorithm was applied in the specific case, where
the intensity of the wave field is known across a spatial and the corresponding
Fourier domain, e.g., at the far-field zone or at the focal plane of a lens [138, 238].
In Fig. 2.4 a two lenses scheme of the conventional iterative Gerchberg–Saxton
phase-retrieval algorithm is presented. The common idea consists of the iterative
replacement of the estimated amplitude at the object |u0(ξ, η)| and Fourier (ob-
servation) planes |uF (kξf ,

kη
f )| by measured or a priori information keeping the

computed phase.

The work on the GS algorithms was continued and improved by many authors
(see, e.g., [57, 231]). It is shown that such iterative phase recovering can be realized
not only with respect to the object plane [57], but also to measurement planes,
using defocus images only (e.g., Misell’s variation of the GS algorithm [155]). In
1982 Fienup systematized the earlier works and introduced some, for now classi-
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Algorithm: Gerchberg–Saxton error-reduction phase retrieval (GS)

Initialization: φ0
0(ξ, η) = φinit0 (ξ, η) for t = 0

Repeat for t = 0, 1, 2, ...
1. Object update by a priori a0(ξ, η), say a0(ξ, η) = 1:
ut0(ξ, η) = a0(ξ, η) · exp(iφt0(ξ, η))
2. Forward propagation and calculation of the phase φtF
φtF (kξf ,

kη
f ) = arg{ e

ikf

iλf e
i f2k (( kξf )2+( kηf )2)F{a0 ◦ exp(iφt0)}(kξf ,

kη
f )}

3. Update of the Fourier image by the measured aF (kξf ,
kη
f ) =

√
IF (kξf ,

kη
f ):

utF (kξf ,
kη
f ) = aF (kξf ,

kη
f ) · exp(iφtF (kξf ,

kη
f ))

4. Backward propagation and calculation of the object phase φt+1
0 (ξ, η)

φt+1
0 (ξ, η) = arg{i e

−ikf

λf e
−ik
2f (ξ2+η2)F−1{aF ◦ exp(iφtF )}

End on t

cal, types of phase-retrieval algorithms3[59]: error-reduction (GS), gradient search
(steepest-descent) methods and input-output algorithm (further developed to the
hybrid input-output algorithm, see, e.g., [212]). Similar methods are proposed
for fractional Fourier and Fresnel transforms [238] instead of Fourier transforms
as the transfer functions of the wave field propagation for both the wave field
reconstruction [238] and optical design [58, 111].

In [31, 59, 201] it is shown that the prior knowledge about the wave field and
its support is employed (as constraints) for successful phase retrieval, to make the
solution unique. However, in practice, when the intensity information contains
measurement noise, the iterative scheme is accompanied with problems of conver-
gence (the convergence rate depends on the investigating object and in some cases
is quite slow [60, 61]), stagnation [61, 201] and uncertainty [212] (more than one
solution consistent with the noisy measurements). It makes phase retrieval a diffi-
cult ill-posed inverse problem. In general, the problem of the uniqueness of phase
retrieval is open4: even if in practical situations the phase-retrieval problems do
have unique solutions and reasonably reliable reconstruction algorithms have been
developed [154] in the presence of noise, it has not yielded any quantitative results
on the probability of uniqueness for any given level of noise [201].

Despite the fact that solutions are in general not unique [31, 201], the ambiguity
of the reconstructed phase can be substantially reduced using a number of obser-
vations [6] either at the sensor plane [7, 178] or diffraction patterns with spatial
phase/amplitude modulations at the object plane [22, 241], what can be applied
for both the reconstruction [106, 240] and synthesis [203]. It is recognized that a

3 The common idea is always the same: replace the calculated amplitude at the observation
plane by the measured one and modify the calculated object wave field.

4 We refer to, e.g., [31, cf. Fig. 7] for more details. Note also than whether the objects are
discrete or continuous, it is easy to make up cases that they are ambiguous. If, for instance,
c(x, y) and d(x, y) are two functions of finite support with Fourier transforms C(v1, v2) and
D(v1, v2), respectively, then the convolutions q1 = c(x, y)~d(x, y) and q2 = c(x, y)~d∗(−x,−y)
are different objects as long as neither c nor d is conjugate centrosymmetric. They have Fourier
transforms Q1(v1, v2) = C(v1, v2) · D(v1, v2) and Q2(v1, v2) = C(v1, v2) · D∗(v1, v2) that have
the same modulus |Q1(v1, v2)| = |Q2(v1, v2)| = |C(v1, v2)| · |D(v1, v2)| and the objects q1 and
q2 are therefore ambiguous.
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Figure 2.4: The scheme of the iterative error-reduction GS phase-retrieval algorithm
[59, 238] and the optical setup for its implementation [138, 238]. Two lenses with the
same focal distances f are arranged to provide accurate mapping of the object wave field
u0 into the Fourier plane giving the wave field uF (v1, v2) = F{u0}(v1, v2), v1 = kξ

f
,

v2 = kη
f

. The backward propagation is numerically calculated via the inverse Fourier
transform. At each iteration (t = 0, 1, ..) the amplitude of the wave field at the object
at0(ξ, η) = |ut0(ξ, η)| and the observation (Fourier) plane at+1

F (v1, v2) = |ut+1
F (v1, v2)| are

updated by the prior information (e.g., a0(ξ, η) = 1) or given measurements (typically
aF =

√
IF , where IF is the (noisy) intensity observation). The initial guess for the object

phase φinit0 is typically taken randomly. The multiplicative components connected with
the Fourier transform in GS are omitted for simplicity.

proper choice of the initial guess and/or applying additional constraints/penalties
can also be employed to improve the uniqueness of the solution, helps to overcome
the convergence uncertainty, decrease the influence of the noise and, as the result,
leads to better reconstruction quality. Here we wish also to mentioned that the
problem with misalignments, say with the displacement of a sensor can be solved
by, e.g., the recent work by M. Agour [3, 4].

It is recognized that the iterative multi-plane (K > 2 in Eq. (2.8)) phase-
retrieval techniques are more flexible, effective (e.g., iteratively the misfocusing
error may be compensated by aggregating of a number of estimates) and robust to
a significantly large amount of noise in measurements with respect to deterministic
approaches. Thus, iterative phase retrieval is considered to be more productive for
treating the phase problem*.

It is found [3, §4.1],[120] that the the complex-valued 3D wave field can be
obtained by four intensity measurements of diffraction patterns, K = 4. It is,
however, not sufficient in case of noise and possible (mechanical) distortions of
the optical system. In contrast to the deterministic TIE based methods with a
significantly large number of observation from K = 3 [217] up to K = 80 [223],
the iterative phase-retrieval algorithms usually operate with 5–10 (including in our
papers P4–P7), up to 20 [7, 8] intensity measurements.

Note also, that the distance between the sensor plane ∆z in both the referred
[7, 8] and our works [P4, cf. Fig. 3] is found experimentally. Rather we present
our recommendations how to choose ∆z depending on K and object size. Note
that this distance does not necessarily have to be equal for all sensor planes. By
using the concept of spatial correlation for wave fields at the sensor planes, for
both their complex amplitude and the measured intensity of these fields, we can
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infer, which planes are suitable to retrieve the phase and which are not [69, cf.
Fig. 1] to choose proper distances between the sensor planes. The accurate choice
of ∆z is our further work.

2.4.3 Successive iterative multi-plane phase retrieval

Traditionally, the iterative phase-retrieval methods are used to reconstruct the
volumetric wave field represented at a number of sensor planes. Let us describe the
procedure of the whole wave field reconstruction, namely: the sequence of phase
distributions {φr}Kr=1 associated with the individual propagation states through
the captured volume. Let ur(x, y) =

√
Ir(x, y) exp(iφr(x, y)), r = 1, ...K, denote

2D transverse complex-valued wave field distributions at the observation planes
with given (noisy) intensities {Ir(x, y)}Kr=1. The index r corresponds to a distance
zr = z1 + (r − 1) · ∆z between the parallel object and the r − th observation
planes, ∆z is a fixed distance between the observation planes. The optical setup
of data acquisition is presented in Fig. 2.2. Then, the circular algorithm, where
the volumetric wave field is reconstructed by wave field propagation from one
measurement plane to another one (ignoring the object plane), can be written as
follows

ûχ(t+1) = Dzχ(t+1)−zχ(t)

{√
Iχ(t) · ûχ(t) · |ûχ(t)|−1

}
, t = 1, 2... (2.12)

Let ûχ(1) =
√
Iχ(1)e

φχ(1) be the initial guess of the wave field distribution at
the χ(1)-th observation plane, which consists of the measured amplitude Iχ(1) and
(for example) random phase φχ(1). The subindex χ(t), t = 1, 2... shows the serial
number of the observation plane, where the estimates of the wave field ûχ(t) are
calculated. Here Dzχ(t+1)−zχ(t)

{·} denotes an invertible operator of the wave field
propagation from the χ(t)-th to the χ(t + 1)-th observation plane, which may be
represented via, e.g., ASD [7, 8, 178]. This operator represents5 the forward wave
field propagation to the distance ∆z = |zχ(t+1) − zχ(t)| if zχ(t+1) > zχ(t) or the
backward propagation to the same distance if zχ(t+1) < zχ(t), zχ(t+1) 6= zχ(t).
The operation in the curly brackets means a replacement of the amplitude of the
calculated estimate at the χ(t)-th sensor plane by the amplitude from the intensity
observations, keeping the phase of the estimate ûχ(t). The formula (2.12) defines
the modern iterative circular algorithm known as the single-beam multiple-intensity
phase reconstruction (SBMIR, [7, 8, 178]) algorithm used in our works P3–P5,
P7 as a reference method.

There is no specific rule determining the sequence of the sensor planes in a set.
For instance, the index of the sensor plane in a sequence for the so-called forward-
forward (FF, from the K-th to the first sensor plane) and forward-backward (FB,
from the K-th to the (K − 1)-th sensor plane) algorithms (see [8, cf. Fig. 2]) can
be found as follows:

χ(t) =

{
αK(t), for FF
α2K−2(t)− 2αK(α2K−2(t))βK(α2K−2(t)), for FB,

(2.13)

5 Evidently Dz1±z2{·} = Dz1{D±z2{·}} = D±z2{Dz1{·}}, thus Dz1−z2{·} can be considered
as the backward propagation to the distance z2 and then forward propagation to z1.
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where αK(t) = mod(t − 1,K) + 1 and βK(t) = b(t − 1)/Kc, where mod(t,K)
means t modulo K. Recall b·c denotes the floor operation.

2.4.4 Parallel iterative multi-plane phase retrieval

Despite the widespread use of the phase-retrieval algorithms by Gerchberg, Saxton,
Misell and Fienup, current mathematical theory cannot satisfactorily explain their
remarkable success: in this case we deal with a nonconvex nonsmooth optimization
problem [26, 140, 164]. It is shown that these algorithms can be identified as an
alternating projections [17, 18, 49, 136, 144, 164] both to the image and object
planes. This interpretation gives an opportunity to design novel phase-retrieval
algorithms with flexible use of extra prior information on measurements and re-
constructed distributions. In particular, there are a variety of papers, where the
variational formulation of the phase-retrieval problem is used, e.g., the wave field
reconstruction is framed as a nonlinear optimization with minimizing of a relative
entropy [28, 40, 164].

Assuming that the measurement noise at the sensor plane observations is zero-
mean Gaussian we formulate the phase-retrieval problem as the variational (con-
strained) optimization problem in terms of the maximum log-likelihood approach.
In our works P3–P7 we introduce novel parallel phase-retrieval procedures fo-
cused on the object plane what is different comparing with the successive SBMIR
algorithm. If the wave field operator Dzr{·} is defined, e.g., by the invertible ASD,
the parallel algorithm originated in P3 is of the form

utr = Dzr{ut0}, for r = 1, ...K, t = 1, 2, ... (2.14)

ut0 =
1

K

K∑
r=1

D−1
zr

{√
Ir · utr · |utr|−1

}
,

where, similar to Eq. (2.12), the operation in the curly brackets stands (again) for
the replacement of the calculated amplitude of the sensor plane wave fields utr by
the measured

√
Ir keeping the phase unchanged. This scheme allows aggregating

a number of object estimates and filtering out the noise, as well as incorporating
a priori information on the object. The significant point of P3 is the use of the
novel discrete diffraction transform for the forward/backward wave field propa-
gation modeling and additional filtering of the object estimate [34]. Following
[40] in the further papers we use the intensity (squared amplitude), instead of the
amplitude, in the optimization criteria to avoid the mathematical difficulties in-
herent with the amplitude function. In P4 we care about both the accuracy of the
calculation of the complex-valued estimates at the sensor plane and fitting of the
computed |utr|2 to the measured intensities Ir. It is realized using the optimiza-
tion of the augmented Lagrangian criterion. The use of a priori information on
the object is presented in P5 by the developed modifications of the phase-retrieval
algorithms constructed especially for the amplitude- and phase-only objects to be
reconstructed. Since the quality of the object reconstructions from experimen-
tal data are generally poor, we apply sparse object regularization to enhance the
imaging quality: P6 and [149] are devoted to an improvement of imaging with an
incorporated filtering separately both the object amplitude and phase.
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The conventional phase-retrieval techniques are mainly based on an ideal wave
field propagation modeling. In practice, wave fields in real coherent imaging sys-
tems and their observations are different from those predicted by theory due to
non-idealities of optical system (misalignment, misfocusing, aberrations), dust on
optical elements, reflections, vibration and so on. Hence, the propagation opera-
tors Dzr{·} can not fully describe the propagation through the real optical path,
and the wave field reconstructions obtained by numerical simulations (i.e. theoret-
ical results) and using real experimental data can be dramatically different. There
are many various numerical approaches, which are used for calibration [227], filter-
ing parasitic reflections [33], compensating for curvature introduced by microscope
objective [175], for aberrations [242] or astigmatism [84]. However, the sources of
different distortions in the optical path are hard to localize and specify. In P7 we
do not even try to identify these particular sources but estimate and compensate
their accumulated effects. In other words, we assumed that there is a general-
ized pupil function [79, §6.4.1] at the object plane which describes distortions in
the coherent imaging system manifested at the sensor plane, and this cumulative
disturbance of the light wave field in the optical path can be recalculated to the
entrance pupil of the optical system (in particular, of the 4f configuration). We re-
fer to the cumulative distortions as “background” disturbances. Thus, in our work
this background is estimated and compensated in order to achieve sharp imaging
of the investigating object. Moreover, we also incorporate some prior information
on the true object wave field to enhance the reconstruction quality: in P7 the
reconstruction of a binary object with unknown lower and upper levels using such
a background compensation and object sparse modeling is presented.





Chapter 3

Discrete diffraction
transform (DDT)

The Rayleigh–Sommerfeld diffraction integral can not be solved analytically, ex-
cept for very few situations, and in most practical applications the integral can be
calculated only numerically. In general, the RS diffraction formula is not widely
used – usually one computes the result of the light diffraction by its Fresnel ap-
proximation [158]. In this Chapter we consider the discrete diffraction propagation
model based on the Fresnel approximation and describe its modifications with av-
eraging within pixels of the discrete object and sensor wave field distributions
resulting in an accurate pixel-to-pixel modeling of the diffraction propagation.

Following the notations in Sections 2.1, u0(ξ, η) and uz(x, y) = Dz{u0}(x, y)
denote transverse complex amplitudes at the object and measurement (sensor)
planes, respectively, as it is illustrated in Fig. 2.1. Numerical computations require
discrete data of finite size, hence the integrals are discretized over the finite support
of integration [221], within the region where u0(ξ, η) 6= 0 (region S in Eq. (1.54)
and Fig. 1.9): in particular, the object u0(ξ, η) is assumed to be localized in a rect-
angular of the size Nξ∆ξ×Nη∆η. For discrete modeling, the continuous arguments
are replaced by the digital ones with a corresponding replacement of the continu-
ous functions by their discrete counterparts: u0(ξ, η) → u0[l] = u0(l1∆ξ, l2∆η),
uz(x, y) → uz[l

′] = uz(l
′
1∆x, l

′
2∆y), uF ( v1

λf ,
v2

λf ) → uF [n] = uF (∆1

λf n1,
∆2

λf n2)

with 2D integer arguments. Different variables l = (l1, l2), n = (n1, n2) and
l′ = (l′1, l

′
2) ∈ Z2 are chosen for the object, Fourier and sensor domains, respec-

tively. This discretization is dictated by the use of digital devices such as a CCD
sensor or a pixelated SLM as a 2D array of liquid crystal cells. Thus, we here-
after consider the discrete wave fields at the object u0[l], Fourier uF [n] and sensor
planes uz[l

′] with pixel (pitch) sizes ∆ξ ×∆η, ∆1×∆2 and ∆x×∆y, respectively,
and the corresponding supports Nξ ×Nη, N1 ×N2 and Nx ×Ny, respectively. In
general, u0, uF and uz are of different image and pixel size.

It should be mentioned that in this thesis and in all our publications (in P1–P7
and [112, 114, 115, 149]) we consider the discrete object wave field distribution in
the form (cf. Eq. (1.20))

u0 = a0 ◦ exp(iφ0), (3.1)

49
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where a0 = |u0| is the vector of the object amplitude and φ0 is the vector of
the object phase, φ0 = arg{u0}. The amplitude modulation (AM) of the object
means that the phase φ0[l] = 0 ∀l and the amplitude is defined by the vectorized
test-image 0 < c[l] ≤ 1, i.e. u0 = c. In our experiments we use chessboard, logo,
Lena or Baboon test-images as c. Analogically the phase modulation (PM) of the
object is represented by the phase only: the amplitude is constant, in particular
a0[l] = 1 ∀l, and the object phase vector is defined by the vectorized test-image as
u0 = exp(iπ(c− 1

2 )).

Since the phase estimate φ̂0 from the intensity measurements can be obtained
up to an arbitrary constant only, the RMSE or PSNR values for the object phase
are calculated for φ̃0 = (φ̂0−mean(φ̂0−φ0))−φ0 in order to eliminate this phase

ambiguity. Here mean(φ̂0−φ0) stands for the mean value of the estimation error
calculated over the test-image φ0.

Evidently, we have no absolute phase and arg{û0} gives the wrapped object
phase estimate. However, in this text the estimate of the object phase is considered
to be localized in the interval [−π, π) and not exceeding π by its absolute value.
The issues related to phase unwrapping and phase singularities are beyond the
scope of this thesis.

3.1 Discrete modeling of diffraction propagation

It is straightforward to obtain digital models for the forward/backward wave field
propagations by taking the Riemann sums instead of the integrals in the diffrac-
tion transforms mentioned in Section 2.2. Following the well-known Whittaker–
Nyquist–Kotelnikov–Shannon theorem the transformation of Eqs. (2.1)–(2.2) into
a discrete convolution is correct, if at least one of the integrands in the continuous
convolution is bandlimited [168]. According to Eq. (1.23) the Fourier spectrum of
u(x, y, z) is supported on a sphere of radius 2π/λ and hence u0(ξ, η) is bandlimited
to k = 2π/λ. The principal difficulty of discretization in the space domain follows
from the fact that the diffraction kernel is modulated by a high-frequency har-
monic component. The required sampling rate, governed by the Nyquist sampling
rate is unacceptably too high for practical purposes: in our case λ is significantly
small, say λ = 532nm. Fortunately, we have an attractive alternative in the fre-
quency domain. Firstly, it follows from Eqs. (1.48), (1.67) that for |v1| � 1/λ

and |v2| � 1/λ the phase φ = 2πz
λ

√
1− λ2(v2

1 + v2
2) ≈ 2πz

λ − πzλ(v2
1 + v2

2) is

slowly varying in v1 and v2 [111]. Secondly, for the object and sensor planes of
finite support, the convolution in Eqs. (2.1)–(2.2) involves only a sub-range of the
full support of az whose size equals to the sum of the supports of these planes
[167, 221]. Since no components of az for large radial distances are required1, thus
the impulse response can be sampled with respect to the involved bandwidth, and
the convolutions – discretized [221].

The discrete convolutional models as sampled versions of the formulas (2.1)–
(2.2) are of the following form:

1 In case of the Fresnel approximation, it is also mentioned that the high-frequency details of
the sensor wave field are lost.
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uz(l
′
1∆x, l

′
2∆y) =

∑
l1,l2

u0(l1∆ξ, l2∆η) · az(l′1∆x − l1∆ξ, l
′
2∆y − l2∆η) ·∆ξ∆η,(3.2)

û0(l1∆ξ, l2∆η) =
∑
l′1,l
′
2

uz(l
′
1∆x, l

′
2∆y) · a−z(l1∆ξ − l′1∆x, l2∆η − l′2∆y) ·∆x∆y,(3.3)

where the hat in û0 means an estimate of u0. These formulas are valid for arbitrary
parameter values, i.e. for any size of the object and diffraction planes and the
pixels at these planes. In particular, the discrete Fresnel transform (az = gz) for
the forward and backward wave field propagation can be represented using the
discrete convolution in the follows matrix form [P1, cf. Eqs. (15)–(16)]

Uz = ∆η∆ξ ·Cx ·U0 ·CT
y , (3.4)

Û0 = ∆x∆y ·CH
x ·Uz ·C∗y, (3.5)

where Cy = (Cy[l′2, l2])Ny×Nη , Cx = (Cx[l′1, l1])Nx×Nξ are the Fresnel transform
matrices calculated according to

Cx[l′1, l1] =
e
iπz
λ

√
iλz

exp

(
iπ

λz
(l′1∆x − l1∆ξ)

2

)
, (3.6)

Cy[l′2, l2] =
e
iπz
λ

√
iλz

exp

(
iπ

λz
(l′2∆y − l2∆η)2

)
. (3.7)

Following P1, we call the transforms defined by Eq. (3.4) and Eq. (3.5)
Matrix Discrete Fresnel Transform (M–DFrT) and Matrix Inverse Discrete Fresnel
Transform (M–IDFrT), respectively.

3.2 Forward DDT with averaging

Let us assume that the input of our model is defined by a pixelwise constant
distribution what may be determined, e.g., by an SLM with 100% fill factor of
pixels; and the output is also discrete defined by the outputs of the (CCD) sen-
sor pixels. Here we introduce the forward discrete diffraction transform (DDT)
for such pixelwise invariant distributions which enables an accurate discrete-to-
discrete modeling due to the precise integration in Eq. (2.1).

Let the 2D discrete wave field distributions at the object u0 and observa-
tion/sensor uz planes of the size Nξ × Nη and Nx × Ny be pixelwise constant
within the rectangular pixels ∆ξ × ∆η and ∆x × ∆y, respectively. Then, taking
into account Eq. (3.2), the integral (2.1) can be represented in the form

uz(x, y) = (3.8)

=

Nξ/2−1∑
l1=−Nξ/2

Nη/2−1∑
l2=−Nη/2

u0[l1, l2]

∆ξ/2∫
−∆ξ/2

∆η/2∫
−∆η/2

az(x− l1∆ξ + ξ, y − l2∆η + η)dξdη,

u0[l1, l2] = u0(l1∆ξ + ξ, l2∆η + η), |η| ≤ ∆η/2, |ξ| ≤ ∆ξ/2,
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i.e. the integration is performed within each pixel of the object wave field assumed
to be pixelwise constant, and the sum is calculated over Nξ × Nη pixels of the
input rectangular array. Let the output of a sensor pixel be the mean value of the
distribution impinging on this pixel (averaging within sensor pixels)

uz[l
′
1, l
′
2] =

1

∆x∆y

∆x/2∫
−∆x/2

∆y/2∫
−∆y/2

uz(l
′
1∆x + ξ′, l′2∆y + η′)dξ′dη′. (3.9)

Inserting Eq. (3.8) into Eq. (3.9) we arrive at the following spatial domain DDT

uz[l
′
1, l
′
2] =

∑Nξ/2−1

l1=−Nξ/2

∑Nη/2−1

l2=−Nη/2
dz[l
′
1, l1; l′2, l2] · u0[l1, l2], (3.10)

l′1 = −Nx/2, ..., Nx/2− 1, l′2 = −Ny/2, ..., Ny/2− 1

with the diffraction kernel dz[l
′
1, l1; l′2, l2] calculated as

dz[l
′
1, l1; l′2, l2] =

1

∆x∆y

∆x/2∫
−∆x/2

∆ξ/2∫
−∆ξ/2

dξdξ′× (3.11)

∆y/2∫
−∆y/2

∆η/2∫
−∆η/2

az(l
′
1∆x − l1∆ξ + ξ′ + ξ, l′2∆y − l2∆η + η′ + η)dηdη′,

l′1 = −Nx/2, ..., Nx/2− 1, l1 = −Nξ/2, ..., Nξ/2− 1,

l′2 = −Ny/2, ..., Ny/2− 1, l2 = −Nη/2, ..., Nη/2− 1.

The kernel dz in Eq. (3.11) is an averaged (pixelwise double-averaged) version
of the original kernel az in Eq. (2.1): the smoothing in Eq. (3.11) takes into
consideration discretization for both the object and sensor arrays. For the Fresnel
diffraction kernel az = gz the kernel dz allows the following factorization

dz[l
′
1, l1; l′2, l2] = Ax[l′1, l1] ·Ay[l′2, l2], (3.12)

where

Ax[l′1, l1] = (3.13)

e
iπz
λ

∆x

√
iλz

∆x/2∫
−∆x/2

∆ξ/2∫
−∆ξ/2

exp

(
iπ

λz
(l′1∆x − l1∆ξ + ξ′ + ξ)2

)
dξdξ′,

Ay[l′2, l2] = (3.14)

e
iπz
λ

∆y

√
iλz

∆y/2∫
−∆y/2

∆η/2∫
−∆η/2

exp

(
iπ

λz
(l′2∆y − l2∆η + η′ + η)2

)
dηdη′

represent the transform matrices with respect to rows and columns, respectively.
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Figure 3.1: Principal setup of a discrete-to-discrete wave field propagation model. Here
U0 and Uz denotes the discrete object and sensor plane 2D wave field distributions. The
accurate link between them is given by vec{Uz} = (Ax⊗Ay) ·vec{U0}, where transform
matrices Ax and Ay manipulate rows and columns of the input matrix U0, respectively.

3.2.1 Two-matrix DDT (M–DDT)

Inserting (3.12) into (3.10) we arrive at

Uz[l
′
1, l
′
2] =

Nξ/2−1∑
l1=−Nξ/2

Nη/2−1∑
l2=−Nη/2

Ax[l′1, l1] ·U0[l1, l2] ·Ay[l2, l
′
2], (3.15)

what defines the matrix form of the discrete input–output forward propagation
model

Uz = Ax ·U0 ·AT
y . (3.16)

Let u0 = vec{U0} and uz = vec{Uz} denote the column vectors constructed
by vectorization of the discrete wave field distributions at the object and sensor
planes [99]. Then, Eq. (3.16) can be rewritten in even more compact form

uz = A · u0, A = Ax ⊗Ay, (3.17)

where the vectors uz and u0 have the lengths #uz = Nx ·Ny and #u0 = Nξ ·Nη,
respectively, and the transform matrix A ∈ CNxNy×NξNη .

The formulas (3.16)–(3.17) define what we call the Matrix Discrete Diffraction
Transform (M− DDT ) with so-called averaged matrices Ax (Eq. (3.13)) and
Ay (Eq. (3.14)). In Fig. 3.1 a discrete-to-discrete wave field propagation model
described in terms of M–DDT is illustrated.

3.2.2 Simplification of M–DDT

Let the pixels’ sizes be so small that the averaging in the forward propagation
integrals (3.11) is not essential. Then the diffraction transform kernel can be
calculated significantly simpler. The corresponding matrices with no averaging
are denoted by By and Bx, respectively, and defined as follows
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Bx[l′1, l1] = lim
∆ξ,∆x→0

Ax[l′1, l1] = (3.18)

=
∆ξe

iπz
λ

√
iλz

exp

(
iπ

λz
(l′1∆x − l1∆ξ)

2

)
= ∆ξ ·Cy[l′1, l1],

l′1 = −Nx/2, ..., Nx/2− 1, l1 = −Nξ/2, ..., Nξ/2− 1,

By[l′2, l2] = lim
∆η,∆y→0

Ay[l′2, l2] = (3.19)

=
∆ηe

iπz
λ

√
iλz

exp

(
iπ

λz
(l′2∆y − l2∆η)2

)
= ∆η ·Cy[l′2, l2],

l′2 = −Ny/2, ..., Ny/2− 1, l2 = −Nη/2, ..., Nη/2− 1,

where Cx and Cy are calculated according to Eqs. (3.6)–(3.7). The relations

Bx = ∆ξ ·Cx, By = ∆η ·Cy (3.20)

mean that within the scalar factors ∆ξ and ∆η the matrices Bx and By are
identical to the matrices of M–DFrT Cx and Cy. Bx and By are called the non-
averaged matrices in order to emphasize that the averaging effect is omitted.

The kernel dz[l
′
1, l1; l′2, l2] in Eq. (3.11) becomes shift-invariant and depends

on the differences of the arguments l′1 − l1 and l′2 − l2 as soon as the pixels at
the object and sensor planes take equal sizes, ∆ξ = ∆x and ∆η = ∆y. In this
particular case M–DDT is essentially simpler to calculate because the transform
matrices in Eqs. (3.14)–(3.13) are symmetrical with respect to the differences of
indices: Ay[l′2, l2] = Ay[l′2− l2] = Ay[l2− l′2], Ax[l′1, l1] = Ax[l′1− l1] = Ax[l1− l′1].
If ∆η = ∆y = ∆x = ∆ξ and Nx = Nξ = Ny = Ny, then Ax = Ay and only one
transform matrix in Eq. (3.16) is required.

If the pixel and image at the object and sensor planes are, in general, rectangu-
lar of the same size, i.e. ∆η = ∆y = ∆a, ∆x = ∆ξ = ∆b and Nx = Nξ, Ny = Ny,
then Eqs. (3.10) and (3.11) can be simplified as follows

uz[l
′
1, l
′
2] =

Nξ/2−1∑
l1=−Nξ/2

Nη/2−1∑
l2=−Nη/2

dz[l
′
1 − l1, l′2 − l2] · u0[l1, l2], (3.21)

l′1 = −Nx/2, ..., Nx/2− 1, l′2 = −Ny/2, ..., Ny/2− 1,

where dz here is a large diffraction transform matrix defined as follows

dz[l1, l2] =
1

∆a∆b

∆a/2∫∫
−∆a/2

∆b/2∫∫
−∆b/2

az(l1∆a + ξ′ + ξ, l2∆b + η′ + η)dξdξ′dηdη′, (3.22)

l1 = −Nξ +Nx
2

+ 1, ...,
Nξ +Nx

2
− 1, l2 = −Nη +Ny

2
+ 1, ...,

Nη +Ny
2

− 1.

Note that the support of dz in Eq. (3.22) is larger comparing with what we
have in Eq. (3.11). Moreover, for the Fresnel diffraction kernel az = gz of such an
enlarger size, dz allows the following factorization [111, cf. Eqs. (23), (24)]

dz[l1, l2] = ρz[l1] · ρz[l2], where
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ρz[l1] =
e
iπz
λ

∆a

√
iλz

∆a/2∫∫
−∆a/2

exp

(
iπ

λz
(l1∆a + ξ′ + ξ)2

)
dξdξ′ = (3.23)

=
∆ae

iπz
λ

√
iλz

1∫
−1

(1− |α|) exp

(
iπ

λz
(l1∆a + α∆a)2

)
dα,

ρz[l2] =
e
iπz
λ

∆b

√
iλz

∆b/2∫∫
−∆b/2

exp

(
iπ

λz
(l2∆b + η′ + η)2

)
dηdη′ = (3.24)

=
∆be

iπz
λ

√
iλz

1∫
−1

(1− |β|) exp

(
iπ

λz
(l2∆b + β∆b)

2

)
dβ.

The proof that the double integral in Eqs. (3.23)–(3.24) can be calculated as a
single integral is given in [111, Appendix B] and [P1, Appendix A].

3.2.3 Double size frequency domain DDT (F–DDT)

It can be shown [111, Appendix 1], that the convolution (3.21) can be solved in
the frequency domain via the fast Fourier transform (FFT), but in this case the
support of the kernel dz is equal to (Nξ +Nx− 1)× (Nη +Ny − 1). To make FFT
applicable, zero-padding of U0 and Uz is required (see, e.g., [196]) to extend their
size and cover the support of the kernel.

The DDT model with averaged matrices and the above mentioned simplifi-
cation (Eqs. (3.23)–(3.24)) realized using DFT/FFT is called Frequency domain
Discrete Diffraction Transform (F −DDT ). It is originated in [111] and computed
according to the following algorithm:

• calculate the Fourier transform of U0 zero-padded to the size Na×Nb, where
Na = Nξ +Nx − 1, Nb = Nη +Ny − 1 as

Π0[n1, n2] = F{ZP(Nx−1)×(Ny−1){U0}}[n1, n2]; (3.25)

• calculate the extended Fourier image of the discrete wave field at the sensor
plane

Πz[n1, n2] = Mz[n1, n2] ·Π0[n1, n2], (3.26)

where n1 = −Na/2, ...Na/2− 1, n2 = −Nb/2, ...Nb/2− 1 and

Mz[n1, n2] = F{dz}[n1, n2], (3.27)

is the “averaged” DDT transfer function (a discrete optical mask in the
Fourier domain) of the extended size calculated by 2D FFT of Eq. (3.22);

• calculate the sensor plane Uz of the original size Nx ×Ny as

Uz[l
′
1, l
′
2] = F−1{Πz}[l′1, l′2], (3.28)

l′1 = −Nx/2, ..., Nx/2− 1, l′2 = −Ny/2, ..., Ny/2− 1.
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Note that for small pixels’ sizes the kernel smoothing effect in Eq. (3.23)–(3.24)
becomes negligible and instead of Eq. (3.22) we arrive at the simple formula [111,
cf. Eq. (14)]

dz[l1, l2] −→
∆a,∆b→0

∆a∆b · gz(l1∆a, l2∆b). (3.29)

If the diffraction kernel dz used in Eq. (3.27) is defined according to the simplifica-
tion (3.29), then the resulting Mz in Eq. (3.26) is called the non-averaged F–DDT
transfer function.

It is found that for the same pixel and image sizes at the object and sensor
planes F–DDT (3.25)–(3.28) and M–DDT (3.16) give the same result of the forward
diffraction propagation Uz. F–DDT is computationally faster, but the M–DDT
model is more flexible because it is valid for arbitrary settings of the optical setup.
Moreover, in contrast to F–DDT, M–DDT does not require zero-padding for the
accurate calculation.

3.3 Sampling conditions

Traditionally the discrete models of the free space diffraction propagation are
considered as approximation for underlying continuous ones given in continuous
variables and in integral forms (see Section 2.2). In particular, the discrete model of
Eq. (1.60) and Eq. (2.6) for the Fresnel approximation az = gz can be represented
as follows

uz

(
l′1

∆x

λz
, l′2

∆y

λz

)
=
eikz

iλz
e
iπ
λz ((l′1∆x)2+(l′2∆y)2)∆ξ∆η × (3.30)

×
∑
l1,l2

u0(l1∆ξ, l2∆η) · e iπλz ((l1∆ξ)
2+(l2∆η)2)e−i2π(l1l

′
1

∆ξ∆x

λz +l2l
′
2

∆η∆y
λz ),

û0(l1∆ξ, l2∆η) =
e−ikz

−iλz
e
−iπ
λz ((l1∆ξ)

2+(l2∆η)2)∆x∆y × (3.31)

×
∑
l′1,l
′
2

uz

(
l′1

∆x

λz
, l′2

∆y

λz

)
· e
−iπ
λz ((l′1∆x)2+(l′2∆y)2)ei2π(l1l

′
1

∆ξ∆x

λz +l2l
′
2

∆η∆y
λz ).

The sampling and aliasing issues are of importance for these approximations
as they define preconditions for reconstruction of continuous signals from sampled
ones [111]. The motivation for the above mentioned DDT models is different:
for the pixelwise constant wave field distributions at the object and sensor plane
the constructed discrete-to-discrete model is precise as the accurate integration
of diffraction propagation (2.1) is assumed. In this development the standard as-
sumptions concerning the sampling and bandlimitedness can be omitted as they
are replaced by the hypothesis that the object plane distribution is piecewise con-
stant or well approximated by this sort of distribution.

Note that Eqs. (3.2)–(3.3) (or, in particular, Eqs. (3.30)–(3.31)) are valid for
arbitrary parameter values, but even if the diffraction kernel az is invertible, the
perfect reconstruction in Eq. (3.3) is not guaranteed, i.e., in general, û0 6= u0. We
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are looking for such a condition, which results in the inversion

û0[l′′1 , l
′′
2 ] =

∑
l1,l2

u0[l1, l2]× (3.32)

×
∑
l′1,l
′
2

a−z[l
′′
1 − l′1, l′′2 − l′2] · az[l′1 − l1, l′2 − l2] ·∆x∆ξ∆y∆η︸ ︷︷ ︸

δl′′1 ,l1
·δl′′2 ,l2

providing the perfect reconstruction û0[l′′1 , l
′′
2 ] = u0[l′′1 , l

′′
2 ]. Here δl′′1 ,l1or δl′′2 ,l2 de-

notes the Kronecker delta (8).
Suppose the discrete wave field distributions at the object and sensor planes

are of the same size Nx×Ny. It can be seen [125, 236] that provided the sampling
condition [P1, cf. Eqs. (11)]

∆x∆ξNx = λ · z, ∆η∆yNy = λ · z, (3.33)

Eqs. (3.30)–(3.31) can be rewritten via DFTs as follows

uz

(
l′1

∆x

λz
, l′2

∆y

λz

)
= ei(kz−

π
2 ) · e iπλz ((l′1∆x)2+(l′2∆y)2) × (3.34)

×F{u0(l1∆ξ, l2∆η) · e iπλz ((l1∆ξ)
2+(l2∆η)2)}∆ξ∆η

λz
,

û0(l1∆ξ, l2∆η) = e−i(kz−
π
2 )e

−iπ
λz ((l1∆ξ)

2+(l2∆η)2) × (3.35)

×F−1{uz
(
l′1

∆x

λz
, l′2

∆y

λz

)
· e
−iπ
λz ((l′1∆x)2+(l′2∆y)2)}NxNy

∆x∆y

λz
;

and, substituting Eq. (3.34) into Eq. (3.35), we arrive at the perfect reconstruction
û0 = u0. Eq. (3.33) is used in our works to calculate the condition for the perfect
object wave field reconstruction.

More generally, if the image and pixel sizes at the object and sensor planes
are equal (Nx = Nξ, ∆x = ∆ξ and Ny = Nη, ∆y = ∆η), then, provided the
sampling condition (3.33), we can treat Eqs. (3.2)–(3.3) as a discrete shift-invariant
convolution and apply DFT (12) to both parts of these equations [125] yielding
[P1, cf. Eqs. (6)–(7)]

uz[l
′
1, l
′
2] = F−1{F{u0} [n1, n2] · F{az} [n1, n2]}[l′1, l′2], (3.36)

û0[l1, l2] = F−1{F{uz} [n1, n2] · (F{az} [n1, n2])∗}[l1, l2], (3.37)

where for the invertible diffraction kernel û0 = u0.

3.4 Numerical implementation

These formulas (3.30)–(3.31) and (3.36)–(3.36) represent the conventional discrete
wave field propagation models. F–DDT from Section 3.2.3 gives an accurate for-
ward wave field propagation via the frequency domain. Note that the numerical
calculation via DFT is time-consuming: O(N2) complexity for 1D DFT.
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The computation of the discrete wave field propagation is typically based on the
fast Fourier transform (1D FFT has O(N logN) complexity): it is the commonly
used, traditional approach [13, 235], because the computation time of algorithms
can be reduced by order of magnitude. Shen and Wang [196] enhance the FFT
based approach by introducing weights in the discrete convolution, whose values
are found by Simpson’s rule for numerical integration. Naskov and Logofătu [158]
use different sampling intervals (unequal sampling step) for the object and sensor
planes in order to widen the spatial range of accuracy of the discrete convolu-
tion. As a result, they obtain a scaled convolution which is still computed fast in
O(N logN) calculations by the use of the discrete fractional Fourier transform.In
[9] the RS impulse response is approximated by polynomial and parabolic phasors.
We also wish to mention that the discrete space domain modeling for holography
is discussed in details in [125], the accuracy of the frequency domain approach
can be found in [166], and interesting developments concern continuous and dis-
crete Fresnel transforms and their multiresolution versions can be found in, e.g.,
[5, 165, 235]. We also usually realize the wave field propagation with FFT.

Note, while the parameters λ, z,∆ξ,∆η,∆x,∆y ∈ R+ are generally real pos-
itive numbers, the image size is defined in pixels, i.e. Ny, Nx, Nξ,Ny ∈ N. We
wish to say that using the conventional FFT routines (say, Fortran or C/C++
libraries) the accurate choice of parameters is out of our control. For instance, we
choose the image sizes as integer multiples of 2 (the conventional size of an image
for FFT should be a power of 2). Thus, the accurate diffraction propagation can
be computed only for a certain sequence of propagation distances with respect to
positive integer image sizes

N ′x = 2d λ · z
2∆x∆ξ

e, N ′y = 2d λ · z
2∆η∆y

e, (3.38)

where d·e denotes the ceiling operation.
Indeed, let z be an arbitrary distance, ∆x = ∆y, ∆ξ = ∆η and λ are given

and fixed. λ·z
∆x∆ξ

and λ·z
2∆η∆y

are equal, but most likely not integer. Then, the

propagation distance corresponding to the sampling condition and valid for the
implementation via FFT (Eq. (3.38)) is z′ =

∆x∆ξ

λ N ′x =
∆x∆ξ

λ · 2d λ·z
2∆x∆ξ

e. There-

fore, in this thesis and in our publications the so-called in-focus distance [125] with
respect to x or y directions, corresponding to the perfect object reconstruction, is
defined by

zf,x =
∆x∆ξ

λ
N ′x, zf,y =

∆η∆y

λ
N ′y. (3.39)

If zf,y = zf,x the in-focus distance is simply denoted by zf . The influence of the
sampling condition on the reconstruction quality is well presented in [P1, Fig. 2].

Evidently the propagation distance should be taken with the step
2∆x∆ξ

λ or
2∆η∆y

λ for the x and y directions2, namely: z = zf,x ±m · 2∆x∆ξ

λ or z = zf,x ±
m · 2∆η∆y

λ , m ∈ N. Otherwise FFT automatically (and unpredictable) modifies
parameters of the optical setup, including the propagation distance, to satisfy

1
Nx

=
∆x∆ξ

λz and 1
Ny

=
∆y∆η

λz .

2 This step is found from the minimal distance between two positive integer even numbers

N2 > N1: e.g., z2 − z1 =
∆x∆ξ
λ

(N2 −N1).
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3.5 Inverse of M–DDT

The conventional wave field reconstruction models [125, 236] are based on digital
approximations of the inverse operator D−1

z {·} and, the discrete algorithms (see,
e.g., Eq. (3.5)) inherit the principal limitation of the integral inverse operator just
because of the finite size of the sensor plane. In contrast to it, we follows to another
approach, the so-called inverse imaging : the object reconstruction is performed
by the numerical inverse of the forward propagation operator Dz. For example,
the reconstruction of Û0 from Uz in case of M–DFrT can be also obtained as a
solution of the equation (3.4). For the nonsingular Cy,z and Cx,z we arrive at the
following backward propagation modeling

Û0 =
1

∆η∆ξ
·C−1

x ·Uz ·C−Ty , (3.40)

and it is different from Eq. (3.5) because in general C−1
x 6= CH

x and C−Ty 6= C∗y,

and the inverse of M–DFrT has a place if and only if CH
y Cy = I and CH

x Cx = I
are the identity matrices. This condition can be guaranteed under the conditions
(3.33) and has no place in the general case.

Following Eq. (3.17), the linear observation model of a holographic scenario is
defined as follows

uz = A · u0 + ε, (3.41)

where u0 ∈ CNξNη is the object vector, A ∈ CNxNy×NξNη is the M–DDT trans-
form matrix and the vector uz ∈ CNxNy describes the result of the forward
diffraction propagation to the distance z. Here and in our works P1–P2 and
[114, 115] the complex-valued uz is assumed to be corrupted by the additive cir-
cular symmetric complex zero-mean Gaussian noise [77]. It means that the real
and imaginary components of the random noise vector ε[l′] are not correlated
(the expectation E〈Re{ε[l′]} · Im{ε[l′]}〉 = 0), independent and identically dis-
tributed (i.i.d.) according to the normal distribution, Re{ε[l′]} ∼ N

(
0, σ2

)
and

Im{ε[l′]} ∼ N
(
0, σ2

)
with the same standard deviation σ > 0 3.

The simplest way to recover the estimate of the object wave field distribution û0

is applying the inverse of the transform matrix to the given (noisy) complex-valued
data according to the naive reconstruction: û0 = A−1 · uz [109]. This inverse of
M–DDT gives an acceptable reconstruction of the pixelwise object distribution
(depending on the noise level σ in ε), if the M–DDT operator is non-singular. In
general case such a straightforward approach of the wave field reconstruction will
typically fail due to the ill conditioning of the transform matrix (see [P1, Fig. 9]).

The concept of well-posed and ill-posed inverse problems goes back to Jacques
Hadamard (1865–1963) at the beginning of the 20th century (e.g., [88]). Accord-
ing to Hadamard’s definition for mathematical models of physical phenomena a
well-posed problem must have a solution (existence), at most one solution (unique-
ness), and this solution must depend continuously on the input data (stability).

3 Recall that values of the used test-image vary from 0 to 1, and in case of AM for the wave
field at the object plane σ=0.01 represents a small amount of noise (1%). However, we deal with
noisy (complex-valued) diffraction patterns at the sensor plane, and for a large distance of the
wave field propagation, say z > 2 · zf , even such a small noise may cause significant degradations
of the object reconstruction due to ill-posedness of the propagation operator.
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A problem is defined as ill-posed, if the solution is not unique or if it is not a
continuous function of the data, i.e. if an arbitrary small perturbation of the data
can cause an arbitrarily large perturbation of the solution [91]. Further we fo-
cus on the problem of the backward wave field propagation computed using the
inverse of M–DDT, the object reconstruction accuracy and imaging obtained in
our numerical simulations from synthetic data. In this thesis and in P1–P2 and
[114, 115] the problem related to the ambiguity of the object phase is out of scope.

3.5.1 Ill-posedness in M–DDT

Traditionally any discussion about the properties of the transform matrices re-
quires knowledge of its singular value decomposition (SVD). The conventional
numerical “tools” that allows explicit analysis of the diffraction transform and
possible difficulties related to Hadamard’s conditions, are the numerical rank and
conditioning number calculated by SVD of the DDT matrices.

It is well-known that the matrix A = (Ay ⊗Ax) can be rewritten using the
SVD decomposition [99]

A = (ΛyDyV
H
y )⊗(ΛxDxV

H
x ) = (Λy ⊗Λx)(Dy ⊗Dx)(Vy ⊗Vx)H , (3.42)

where Λy,Λx and Vy,Vx are square orthogonal matrices of eigenvectors, and
Dy,Dx are the diagonal matrices with the real-valued nonnegative singular values
χy[j] (j = 1, ...min(Nη, Ny)) and χx[s] (s = min(Nξ, Nx)), respectively, appearing
in nonincreasing order.

Let us assume for a moment that there is no noise in the complex-valued
observation data: ε in Eq. (3.41) is a zero vector. The least square (LS) estimate
û0 is a solution of the normal equation

AHuz = AHA · u0, (3.43)

where [160, 99]

AHA = AH
x Ax ⊗AH

y Ay = (Vy ⊗Vx)(DT
y Dy ⊗DT

xDx)(Vy ⊗Vx)H . (3.44)

The rank of the Hermitian matrices AH
y Ay or AH

x Ax is, from a mathematical
point of view, the number of linearly independent rows (columns) or these matrices.
The rank is equal to the number of strictly positive singular values (χy[j])2 or
(χx[s])2, respectively, and the maximum value of (χy[j])2 or (χx[s])2 is equal to
min(Nη, Ny) or min(Nξ, Nx), respectively. In the presence of errors (in practice,
the measurement data always has some noise, particularly by approximation and
discretization errors, and even computer simulated data are corrupted with round-
off errors) this definition is not useful. Thus, we use, from a practical point of view,
the numerical rank as the number of rows (columns) of AH

y Ay or AH
x Ax, which

are almost linearly independent with respect to some error level [91, cf. Chapter
3]. Hence, the numerical rank of the square matrices AH

y Ay and AH
x Ax is defined

regarding to a tolerance τε by [91, cf. Eq. (3.3)]

rank(AH
y Ay) = max

j
(j : (χy[j])2 > τε), (3.45)

rank(AH
x Ax) = max

s
(s : (χx[s])2 > τε),
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where the tolerance τε = 10−12 is taken experimentally (as in P1) and it is the
same for both AH

y Ay and AH
x Ax.

The conditioning number of AH
y Ay and AH

x Ax is defined as the ratio between
the largest and the smallest singular values of these matrices

cond(AH
y Ay) =

(χy[1])2

(χy[min(Nη, Ny)])2
, cond(AH

x Ax) =
(χx[1])2

(χx[min(Nξ, Nx)])2
.

(3.46)

For simplicity, we typically consider the case, when Nx = Nξ and Ny = Nη.
It is known that the conditioning number (the rank) of the matrix AHA is

the product of the conditioning numbers (ranks) calculated separately for the
matrices AH

x Ax and AH
y Ay [99]. In general, this statement is not true for the

numerical rank: rank is computed depending on the chosen tolerance4. It is,
however, much simpler to work with the individual transform matrices AH

y Ay

and AH
x Ax due to their much smaller dimensions comparing with AHA. For the

same reason, it is simpler to characterize the conditioning of M–DDT using cond
or rank of the matrices AH

y Ay and AH
x Ax separately. Therefore, the numerical

rank rank(AHA) is hereafter defined by the product of the numerical ranks of
AH
x Ax and AH

y Ay as a more rigorous, even though rough, evaluation, i.e.

cond(AHA) = cond(AH
x Ax) · cond(AH

y Ay), (3.47)

rank(AHA) =̃ rank(AH
x Ax) · rank(AH

y Ay).

In addition, such cond and rank of AHA serve as a conventional indicator of the
reconstruction quality.

For rectangular object and sensor planes the perfect reconstruction Û0 = U0

is achieved provided the following assumptions:

1. The support of the sensor plane distribution is equal to or larger than the
support of the object plane distribution Nx ≥ Nξ and Ny ≥ Nη, otherwise
it is already referred to super resolution methods. In addition, we introduce
here the size ratio of these image qx = Nx/Nξ ≥ 1, qy = Ny/Nη ≥ 1;

2. AH
y Ay and AH

x Ax are full rank matrices, i.e.

rank(AH
x Ax) = Nξ, rank(AH

y Ay) = Nη.

To address the second statement, we use the numerical rank calculated by
Eq. (3.45), and the perfect reconstruction is replaced by the numerical perfect
reconstruction, i.e. those which provides practically high reconstruction accuracy

4 For instance, in the experiment with rectangular pixels of the size ∆η = ∆y = 5µm,
∆x = ∆ξ = 8µm and square images Nx = Nξ = Ny = Ny = 64 for z = 2 · zy provided Eqs.

(3.39), the numerical ranks rank(AH
x Ax) = 61, rank(AH

y Ay) = 43 for the tolerance τε = 10−12

and max
j,s

(j, s : (χy [j])2 ·(χx[s])2 > τ2
ε) = 3152, where rank(AH

x Ax)·rank(AH
y Ay) = 2623. Note

that the strict relation between the numerical ranks of AHA and the individual matrices AH
x Ax

and AH
y Ay is out of scope of this thesis.
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in RMSE or PSNR. If the conditions 1 and 2 are held, then the numerical perfect
reconstruction is given by the formula

Û0 = (AH
x Ax)−1AH

x ·Uz ·A∗y(AT
y A∗y)−1, (3.48)

or, in other words,
û0 = (AHA)−1AH · uz (3.49)

In addition, the transform matrices AH
y Ay and AT

xA∗x in Eq. (3.48) become well
conditioned and invertible. Thus, in case of the same pixels’ size ∆x = ∆ξ and
∆y = ∆η the object estimate is defined by û0 = AH · uz or

Û0 = AH
x ·Uz ·A∗y, (3.50)

what represents M–IDFrT model with averaged matrices. Here and in P2 we
additionally consider the reconstruction quality obtained by this scheme.

Let the size ratios qx = qy = 1 and the conditions (3.33) be fulfilled. Then,
taking into account Eqs. (3.20) and

λz

∆2
ξNx

BH
x Bx =

λz

Nx
CH
x Cx = I,

λz

∆2
ηNy

BT
y B∗y =

λz

Ny
CT
y C∗y = I, (3.51)

we can express the object reconstruction via the non-averaged matrices as

Û0 = (BH
x Bx)−1BH

x ·Uz ·B∗y(BT
y B∗y)−1 = (3.52)

(λz)2

∆2
ξNx∆2

ηNy
BH
x ·Uz ·B∗y =

(λz)2

∆ξNx∆ηNy
CH
x ·Uz ·C∗y

or, provided the same pixels, as Û0 = BH
x ·Uz ·B∗y.

The numerical study in P1–P2 and [114, 115] shows that, depending on the
parameters of the propagation system (the propagation distance z, the pixel and
images sizes), the matrices Ay and Ax are correctly ill conditioned [91], i.e. this ill-
posedness is a part of the formulation of the diffraction propagation model using
M–DDT. Providing the accurate forward wave field propagation the transform
matrices for z larger than the in-focus distances become numerically singular and
Eqs. (3.48)–(3.50) – practically useless: they give either unstable results highly
sensitive regarding to the parameter variations and observation noise or just fail.

3.5.2 Conditioning of M–DDT and inverse reconstruction
accuracy

It can be shown that the numerical rank and the conditioning number of the
transform matrices AH

y Ay and AH
x Ax (in general, AHA) can be used as a good

indicator of the accuracy of the object distribution reconstruction. rank and cond
in Eqs. (3.45)–(3.47) are seriously dependent on the sensor size, pixel size, propa-
gation distance z and on the the parameters qx and qy, which define a redundancy
of the sensor with respect to the object distribution5.

5 The larger sensor image is, the better accuracy of reconstruction for the object plane.
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Firstly, let us consider the conditioning number in case of square images and
pixels of the same size at the object and sensor plane, Nx = Ny, qx = qy = 1 and
∆ξ = ∆η = ∆x = ∆y. It can be seen that the minimum value of cond corresponds
exactly to the in-focus distance z = zf (Eqs. (3.33) and (3.39), see [P2, Fig. 5],
[114, Fig. 4(a)]), what results in the best reconstruction quality in RMSE (cf.
[P2, Fig. 4], [114, Fig. 4(b)]). This distance z = zf also corresponds to the peak
of the curve of the numerical rank computed for the averaged matrices (see [P1,
Fig. 3], [115, Fig. 1(top image)]). However, even for slightly smaller z = 0.95 · zf
(larger z = 1.05 · zf ) distances the conditioning number grows rapidly increasing
by orders of magnitude, and the reconstruction of the object distribution becomes
more and more questionable for distances different from zf .

For large propagation distances z > zf , precisely z > zf,x, z > zf,y there is a
problem related to the support of the discrete diffraction kernel. In [125, Chapter
A.13] it is mentioned that the continuous diffraction kernels are chirp-like functions
of infinite extent, where the frequency of the oscillations increases together with
the radial distances from the origin and decreases for larger propagation distances.
But things dramatically change, if we investigate the finite chirp function, which
represents only a section of the infinite one in a finite interval. Let us consider
the used Fresnel diffraction kernel (1.59). It is easy to see that, provided the
sampling conditions Eqs. (3.33) and (3.39), the support of the discrete kernel is
∆ξ

∆x
N ′x ×

∆η

∆y
N ′y, and in case of the same pixel size at the object and sensor plane

regarding to the x and y direction the support is N ′x ×N ′y because

exp(
iπ∆2

ξ

λzx
(l1 +N ′x)2) = (3.53)

= exp(i2π
∆ξ

∆x
l1)︸ ︷︷ ︸ ·

=1, if ∆ξ=∆x

exp(
iπ∆2

ξ

λzx
l21) · exp(iπ

∆ξ

∆x
N ′x),

exp(iπ
∆ξ

∆x
N ′x) =

{
−1, odd N ′x, ∆ξ = ∆x

1, even N ′x, ∆ξ = ∆x

analogically

exp(
iπ∆2

y

λzy
(l2 +N ′y)2) = exp(

iπ∆2
y

λzy
l22), (3.54)

if N ′y is even6 and ∆η = ∆y. For z < zf,x, z < zf,y the mentioned support size

becomes larger than the available 2D measurement array (e.g., for z = 1
2 · zf the

kernel support is exactly two times smaller than the image size), what is indicated
by the numerical rank close to its maximum value.

In case of z > zf,x, z > zf,y we lose the high-frequency components of the
kernel. Hence, the reconstruction quality will be (much) worse, what is indicated
by the conditioning number which immediately becomes very large and numerical
ranks of the M–DDT transform matrices which start to decrease monotonically.
In Fig. 3.2 we demonstrate the Fresnel diffraction kernel calculated on square
3
2N
′
x× 3

2N
′
y grid, N ′x = N ′y = 256 for square pixels ∆η = ∆y = ∆x = ∆ξ = 3.45µm

6 It could be another reason to choose the image sizes as integer multiples of 2.
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Figure 3.2: The Fresnel diffraction kernel gz(l1∆ξl2∆η) = eikz

iλz
e
ik
2z

((l1∆ξ)2+(l2∆η)2)

calculated on the grid 3
2
N ′ξ × 3

2
N ′η samples, N ′ξ = N ′η = 256, with square pixels

∆η = ∆y = ∆x = ∆ξ = 3.45 µm for the propagation distances (from left to right

column-wise) z = { 3
4
· zf , zf and 3

2
· zf} , zf =

∆x∆ξN
′
x

λ
=

∆x∆ξN
′
y

λ
. The support of the

kernel N ′x ×N ′y is marked by a dashed square. The real part Re{gz} is presented in the
top row, and the imaginary part Im{gz} – in the bottom row, respectively.

for different propagation distances: z = 3
4 · zf , z = zf and z = 3

2 · zf . The real
part of this kernel is presented for the corresponding distances in the top row:
Re{g3/4·zf [l1, l2]} in Fig. 3.2(a); Re{gzf } in Fig. 3.2(b) and Re{g3/2·zf } in Fig.
3.2(c), respectively. The imaginary part is shown in the bottom row: Im{g3/4·zf }
in Fig. 3.2(d); Re{gzf } and Im{gzf } in Fig. 3.2(e) and Im{g3/2·zf } in Fig. 3.2(f),
respectively. The support of the kernel of the size N ′x ×N ′y corresponding to the

in-focus distance zf =
∆x∆ξN

′
x

λ =
∆y∆ηN

′
y

λ is marked by a dashed square. It can
be seen that for larger distances we operate with smaller and smaller portion of
the kernel support with low frequencies only.

It is well known that the Kronecker delta can be expressed as a summation

of complex exponents δl′,l′′ = 1
N

∑N/2−1
l=−N/2 exp(±i2π l

N [l′ − l′′]). The decay of

the matrix conditioning [P2, Fig. 5] and, as the result, decreasing of the object
reconstruction accuracy [P1, Fig. 4] for z < zf can be explained by the failure of
the assumption (3.32): for 1

2 ·zf < z < zf the numerical size (in pixels) of the used
diffract kernel is larger than its support, but the number of components is not a
multiple of N . For z = 1

2 · z we have a multiple redundancy, i.e. the used size
is precisely two times larger than the diffraction kernel support. In this case the
averaging of the M–DDT matrices practically provides a very good imaging: see
Fig. 3.3, [P1, Fig. 8] and [P2, Fig. 3] for AM. While the reconstructions by M–
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Figure 3.3: Amplitude reconstruction for the close distance z = 1
2
· zf , AM, Lena test-

image. The results are obtained (a) by the inverse M–DDT as |Û0| = |A−1
x Ax · U0 ·

AT
yA
−T
y | ; (b) by M–IDFrT with the averaged matrices as |Û0| = |AH

x Ax ·U0 ·AT
yA
∗
y|.

M–IDFrT with the non-averaged matrices calculated by (c) |Û0| = c0 ·|CH
x Cx ·U0 ·CT

yC
∗
y|

or (d) |Û0| = c0
∆ξ∆η

· |CH
x Ax ·U0 ·AT

yC
∗
y| fails due to aliasing. Here c0 = (λz)2

NxNy
.

IDFrT with non-averaged matrices are completely destroyed by the aliasing effects
(see Fig. 3.3(c) and Fig. 3.3(d7)), the reconstruction imaging by the averaged
matrices is good: the inverse of M–DDT (cf. Eq. (3.48)) results in a numerically
perfect imaging, Fig. 3.3(a); M–IDFrT with the averaged matrices gives a good
reconstruction quality corrupted however by certain “waves” on the borders, Fig.
3.3(b). For even smaller z < 1

2 · z we have larger redundancy: the conditioning
number [P2, Fig. 5], numerical rank [P1, Fig. 3] as well as the RMSE curve [P2,
Fig. 4] become erratic, but the inverse of M–DDT result in a good imaging.

For the redundant sensor size with, say qx = qy = {2, 4}, the numerical ranks

are also decreasing functions for z >
qx·∆x∆ξN

′
x

λ and/or z >
qy·∆y∆ηN

′
x

λ , but rank
of the averaged matrices for z ≤ zf take the maximum value up to the very small
distances z (in P1–P2, [114, 115] more details are presented). It means that M–
DDT with the averaged matrices is able to give object reconstructions of the very

high accuracy for the whole interval λ� z ≤ min(
qx·∆x∆ξN

′
x

λ ,
qy·∆y∆ηN

′
x

λ ).

7 We additionally present the object reconstruction from the accurate M–DDT measurement
data by M–IDFrT with the non-averaged matrices.
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3.5.3 Regularization of inverse M–DDT

Since we always deal with noisy data at least due to discretization and computa-
tional rounding errors, it is necessary to incorporate some additional information
about the used transformation or the desired solution in order to modify the
problem and to single out a useful and stable solution. This is the purpose of reg-
ularization. We use the regularization for the numerical treatment of Eqs. (3.48)
and (3.50) with ill conditioned transform matrices.

Traditionally, ill conditioning problems belong to one of these two classes: rank-
deficient and discrete ill-posed problems. No regularization method is superior to
the other methods. Rather, each method has its advantages, depending on the
properties of the transform matrices and application in which it is used. In our
case both methods, described below, can be used to obtain a regularized inverse
solution, however in P1–P2 we use the classical Tikhonov regularization because
it is found to be more stable for large amount of noise, simpler and enables better
imaging in case of large propagation distances.

Regularization by truncation

Rank-deficient problems are characterized by the transform matrix, having a clus-
ter of small singular values, and there is a well-determined gap between large and
small singular values. This implies that one or more rows (columns) of trans-
form matrices are nearly linear combinations of some or all of the remaining rows
(columns). Therefore, the matrices Ay and Ax contain almost redundant infor-
mation, and the key to the numerical treatment of such problems is to extract the
linearly independent information in these matrices, to arrive at another problem
with a well conditioned matrices [91].

This problem can be dealt using the truncated SVD

Û0 = VxD
+
τxD

T
xΛH

x ·Uz ·Λ∗yDyD
+
τyV

T
y . (3.55)

Here the components of the diagonal matrix D+
τx = diag({χ+

x [s]}) ∈ RNξ×Nξ is
expressed via the truncated vector of the singular values [91, cf. Eq. (2.3)]

χ+
x [s] =

{
1/(χx[s])2, s = 1, ...τx
0 s > τx

(3.56)

where τx ≤ rank(AH
x Ax) is the threshold, which characterizes the number of non-

zero singular values. Similarly, the non-zero components of D+
τy = diag({χ+

y [j]})
are χ+

y [j] = 1/χ2
y[j] for j = 1, ...τy, τy ≤ rank(AH

y Ay). That technique is
called regularization by truncation [109]. In addition, the sensitivity of the LS

solutions Û0 to perturbations of the transform matrices and measurements Uz

can be measured by

cond(AH
y Ay) =

(χy[1])2

(χy[rank(AH
y Ay)])2

, (3.57)

cond(AH
x Ax) =

(χx[1])2

(χx[rank(AH
x Ax)])2

.
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Figure 3.4: Influence of the used amount of singular values {χy[j]}, j=180,...256 of the

transform matrix AH
y Ay of the size 256 × 256 on the reconstruction accuracy (in PSNR)

by the truncated SVD. The maximum values of PSNR in case of noiseless and noisy
(σ = 0.01) measurement data are emphasized by large dots of the corresponding color.
The amplitude reconstruction are made for z = zf and z = 1.15 · zf .

In case of noise data (see Eq. (3.41)) we can write [109]

A−1uz = A−1(Au0 + ε) = û0 + A−1ε, (3.58)

where the error A−1ε can be bounded by

||A−1ε||22 ≤ ||A
−1||22·||ε||

2
2 (3.59)

Even if ||ε||22 is small the error A−1ε will be quite large, because ||A−1||2F is large
due to the Kronecker product based structure of the transform matrix. This is a
kind of amplification of noise. Taking into account the truncated SVD, Eq. (3.55),
we arrive at

Û0 = VxD
+
τxD

T
xΛH

x · (Ax ·U0 ·AT
y + E) ·Λ∗yDyD

+
τyV

T
y , (3.60)

where E is the matrix, constructed from the vector of noise ε = vec{E}. The error
term can be estimated as follows

||VxD
+
τxD

T
xΛH

x ·E ·Λ∗yDyD
+
τyV

T
y ||

2 ≤ ||D+
τx

DT
x ||

2 · ||E||2 · ||D+
τyD

T
y ||. (3.61)

It means that the noise gets amplified less and less if we choose smaller number of
components of D+

τx and D+
τy .

Let the images and pixels at the object and sensor planes are square and of the
same size, i.e. Ax = Ay, where Nξ = Nη = 256 and ∆ξ = ∆η = 7.4µm. In Fig.
3.4 we compare the behavior of singular values {χy[j]} for (solid curve) z = zf and
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Figure 3.5: Amplitude reconstruction using the regularization by truncation, Eq. (3.55),
for noiseless data σ=0 and z = 1.15 · zf . The reconstruction is performed for dif-
ferent number of singular values τx = τy: (a) τx=210, RMSE=0.0294; (b) τx=233,
RMSE=0.0118 (c) τx=235, the reconstruction fails.

(dashed-dotted curve) for z = 1.15 · zf , and consider the reconstruction quality of
an amplitude-only object (AM) in PSNR from noiseless and noisy data depending
on the number of involved {χy[j]} (sorted in descending order). Note that the
gap between large and small singular values becomes more and more evident with

Figure 3.6: Amplitude reconstruction (AM, Lena test-image) obtained using the regu-
larization by truncation, Eq. (3.55), τx = τy, for different distances, noisy and noise-
less data: (a) z = zf , τx=256, σ=0, RMSE=1.6·10−14; (b) z = zf , τx=219, σ=0.01,
RMSE=0.0344; (c) z = 1.15 ·zf , τx=233, σ=0, RMSE=0.0118; (d) z = 1.15 ·zf , τx=209,
σ=0.01, RMSE=0.039.
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increasing the propagation distance. While the singular values {χy[j]} decrease
monotonically for z = zf , in case of z = 1.15 · zf their values decreases rapidly
(by approximately eight orders of magnitude): see {χy[j]} in the interval from
j ∈ [226, 235].

In case of noiseless data (σ = 0, solid curves) the peaks of PSNR can be
easily seen in τy = 256 and τy = 233 for z = zf and z = 1.15 · zf , respectively.
Nevertheless, in Fig. 3.5 it is illustrated the choice of the proper number of singular
values is not trivial: the reconstruction with too small singular values fails, but
too small number of used singular values leads to a significant degradation of
the object reconstruction. For noisy data, σ = 0.01, we have a gently sloping
curve of PSNR: a slow, monotonic increase and then a fairly rapid decrease (more
rapid decay for larger distances z). In Fig. 3.4 it is shown that the best results
for noisy data are for τx = 219 if z = zf and for τx = 209 if z = 1.15 · zf ,
respectively. Here τx = τy. In Fig. 3.6 the object amplitude reconstructions for
these optimal number of singular values τx with respect to PSNR are illustrated:
Fig. 3.6(a) demonstrates the practically perfect reconstruction; in Fig. 3.6(c)
we have slightly worse reconstruction accuracy and imaging, respectively. The
amplitude reconstructions from noisy data in Fig. 3.6(b) and Fig. 3.6(d) look
equally poor due to strong degradation by “wave” artifacts.

Tikhonov’s regularization

Discrete ill-posed problems arise technically from the discretization of ill-posed
problems when all singular values of transform matrices decay gradually (on the
average) to zero and there is no precise notion of a proper numerical rank for these
matrices (cf. Fig. 3.5(b) and 3.5(c)). Then, such an ill-posed problem needs to
be reformulated for numerical treatment. Typically this involves additional as-
sumptions, such as smoothness of solution or a priori information on the object
distribution. This is a classical regularization process, and Tikhonov’s regulariza-
tion [91, 109, 219] is a common and well-known form of regularization of linear
ill-posed problems.

Although many types of additional information about û0 is possible in princi-
ple, the dominating approach to regularize the discrete ill-posed problems is the
requirement that the `2 norm of the solution must be small. An initial estimate
u†0 of the solution may be also included in the side constraint. Thus, instead of
the solving the conventional LS problem min

u0

||uz − A · u0|| one is looking for a

regularized estimate of u0 that defined by minimization of the quadratic criterion

û0 = arg min
u0

||uz −A · u0||22 + µ2 · ||L(u0 − u†0)||22, (3.62)

where L could be, for instance, a differentiation matrix (discretized differential
operator [91, 95, 109]). For discrete ill-posed problems, the goal is to find a balance

between the residual norm ||uz−A · u0||22 and the penalty ||L(u0−u†0)||22 (the size
of the solution) that matches the errors in the data as well as one’s expectations
to the computed solution [91]. The regularization parameter µ2 serves for this
purpose. In our work (as in P1–P2 and [114, 115]) we have no initial estimate

(i.e. u†0[l] = 0 ∀l) and the matrix L in Eq. (3.62) is, for simplicity, the identity
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matrix L = I. Thus, we are looking for the regularized estimate of the object as
the solution of the following optimization problem

Û0 = arg min
U0

||Uz −Ax ·U0 ·AT
y ||2F + µ2 · ||U0||2F or (3.63)

û0 = arg min
u0

||uz −A · u0||22 + µ2 · ||u0||22 (3.64)

|| · ||2F in Eq. (3.63) denotes the quadratic Frobenius matrix norm. The reg-
ularization penalty ||U0||2F or ||u0||22 enables to obtain a bounded and smooth
object estimate and the regularization parameter µ2 controls the level of the
smoothness of this estimate. The regularized inverse û0 defined as a minimizer of
J = ||uz −A · u0||2 + µ2||u0||2 is calculated by [P1, Appendix B]

∂

∂uH0
uHz uz − uHz Au0 − uH0 AHuz − uH0 AHAu0 + µ2uH0 u0 = 0

Using SVD (3.44), the accurate solution can be given in the form of the Tikhonov
regularized inverse (RI)

û0 = (AHA+µ2I)−1︸ ︷︷ ︸
A−1
µ

AH · uz = (3.65)

= (Vy ⊗Vx)((DT
y Dy ⊗DT

xDx) + µ2I)−1(DT
y ⊗DT

x )(ΛH
y ⊗ΛH

x ) · uz.

Note, however, that the approximate Tikhonov RI originated in P1 and given
by

Û0 ≈ (A
H
x Ax + µI)

−1
AH
x ·Uz ·A∗y(A

T
y A∗y + µI)

−1
= (3.66)

= Vx(DT
xDx + µI)−1ΛH

x ·Uz ·Λ∗y(DT
y Dy + µI)−1VH

x

is, in general, computationally simpler because of the significantly smaller dimen-
sion of transform matrices. Comparing the latter equation with Eq. (3.48), note
that the inverse of AH

x Ax and AT
y A∗y is just replaced by the inverse of their reg-

ularized versions AH
y Ay + µI and AT

xA∗x + µI. Using Eqs. (3.51) and (3.52) we
may rewrite the approximate regularized inverse solution for non-averaged matri-
ces [P1, cf. Eq. (44)] as follows

Û0 ≈
(λz)2

∆2
ξNx∆2

ηNy
(B
′
x +

µλz

∆2
ξNx

I)
−1

BH
x ·Uz ·B∗y(B

′
y +

µλz

∆2
ηNy

I)
−1
, (3.67)

B′x =
λz

∆2
ξNx

BH
x Bx, B′y =

λz

∆2
ηNy

BT
xB∗x.

3.6 Actual results and accuracy prediction

The comparison of the reconstruction accuracy obtained by the approximate Tikho-
nov RI and by M–IDFrT (with no regularization, µ = 0) using the averaged or
non-averaged matrices can be found in [P2, Fig. 2]. Following this text these
results are obtained by Eq. (3.66) or Eq. (3.67) for the regularized inverse and by
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Eqs. (3.48)–(3.50) or Eq. (3.52) for M–IDFrT. It can be seen that M–IDFrT is
systematically worse than M–DDT for z > 1.5 · zf . However, as it is also shown in
Fig. 3.3, that averaging allows significantly improving the reconstruction quality
comparing with the conventional Fresnel diffraction transform.

In [114, Fig. 3] and [115, Fig. 2] it is illustrated the comparison of the ampli-
tude reconstruction accuracy by different methods: M–DDT with the approximate
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Figure 3.7: The amplitude reconstruction quality (in PSNR [dB], bottom image) versus
conditioning number (cond, middle image) and the numerical rank (rank for τε = 10−12,
top image) of the transform matrices AH

y Ay, AH
x Ax and AHA for rectangular pixels

of the same size at the object and sensor plane 8×5 (µm). The results are obtained by
the truncated SVD, Eq. (3.55); Tikhonov accurate (Eq. (3.65), µ2=10−24) and approx-
imate regularized inverse (Eq. (3.66), µ=10−12) for z ∈ [

zf,y
2
, 2 · zf,x]. zf,y =24.1mm,

zf,x =61.6mm, AM, Baboon test-image (512×512 pixels), σ=0.
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solution (3.66), F–DDT (Eqs. (3.25)–(3.28)), M–IDFrT with no averaging, and
conventional convolutional methods of the single (conv1, Eq. (3.29)) and double
size (conv2, zero-padding as in F–DDT or [196]). It is found that the best result
is almost always in favor of M–DDT.

In Fig. 3.7 and [P1, Fig. 10] the comparison of the amplitude reconstruc-
tion accuracy with respect to the numerical rank and conditioning number cond
for noiseless data is presented. The results are given for square images of the
size 512 × 512 and rectangular pixels at the object and sensor planes of the size
∆ξ = ∆x = 8µm, ∆η = ∆y = 5µm. The conditioning number cond(AHA) has
two local minima corresponding to zf,x = 61.6mm and zf,y = 24.1mm (see Fig.
3.7(middle image)), thus the single in-focus distance for the M–DDT algorithm is
recommended to be chosen with respect to the numerical rank as an alternative.
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Figure 3.8: The amplitude reconstruction quality in PSNR (bottom image) versus rank
for τε = 0.02 (top image) of the transform matrices AH

y Ay, AH
x Ax and AHA for rectan-

gular pixels of the same size at the object and sensor plane 8×5 (µm). The results are cal-
culated by the truncated SVD, Eq.(3.55); Tikhonov accurate (Eq. (3.65), µ2=0.0015) and
approximate regularized inverse (Eq. (3.66), µ=0.01) for z ∈ [

zf,y
2
, 2·zf,x]. zf,y =24.1mm,

zf,x =61.6mm, Baboon test-image (512×512 pixels), noisy measurement data σ=0.01.
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Figure 3.9: Amplitude reconstruction by (a) the truncated SVD, RMSE=0.052, τx =
τy=429, (b) the accurate Tikhonov RI, RMSE=0.047, and (c) the approximate Tikhonov
RI, RMSE=0.049 for square pixels ∆ξ = ∆η = ∆x = ∆y = 7.4µm. The results are given
for AM, Baboon test-image (512×512 pixels), z = 1.15 · zf noisy data σ=0.01.

The one-to-one relation between rank(AHA) and the reconstruction accuracy in
PSNR in Fig. 3.7 is obvious, so we take zf = min(zf,x, zf,y) [P1, cf. Eq. (51)]
corresponding to the best accuracy in the interval [zf,y, zf,x]. The similar behavior
can be seen for noisy data, σ = 0.01: see in Fig. 3.8.

Recall that in case of σ = 0 we calculate rank for the tolerance τε = 10−12

and take a quite small regularization parameter µ = 10−12 . For noisy data σ =
0.01 the numerical rank is calculated regarding to the essentially larger tolerance
τε = 0.02 for all z. Analogically, the regularization parameter is taken much larger
and different in the accurate and approximate model of the Tikhonov regularized
inverse: µ2 = 0.0015 and µ = 0.01, respectively. If we take, say, µ = 0.0387 for the
approximate Tikhonov scheme, the reconstruction accuracy will be systematically
worse up to 20% in PSNR.

The curves corresponding to the approximate solution of the Tikhonov regu-
larization (3.66) and the regularization by truncation (3.55) are almost completely
merged in Figs. 3.7 and 3.8 with a slight superiority (about 5% in RMSE for
σ = 0.01) in M–DDT. Nevertheless, the reconstructing imaging of the Tikhonov
RI in general is better (see Fig. 3.9), and the operation with the regularization pa-
rameter is much simpler and computationally efficient comparing with the calcula-
tion of SVD and choice of a proper number of singular values for the regularization
by truncation.

Table 3.1: The reconstruction accuracy (in PSNR) of the object amplitude (AM, Baboon
test-image, 512×512 pixels) found by (column-wise, from left to right) the truncated SVD,
the accurate and approximate Tikhonov RI for rectangular pixels.

PSNR [dB]
z σ τy τx Eq. (3.55) Eq. (3.65) Eq. (3.66)

z = zf,y σ = 0 512 476 39.71 41.79 39.75
z = zf,y σ = 0.01 466 464 27.73 28.55 28.12
z = zf,x σ = 0 217 512 25.11 25.44 25.12
z = zf,x σ = 0.01 203 466 23.49 23.86 23.62
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The reconstruction imaging of the object amplitudes by the truncated SVD,
accurate and approximate Tikhonov RI in the key points z = zf,y and z = zf,x
both for noiseless and noisy data is found to be very close (for z = zf,x becomes
worse comparing with the results for z = zf,y due to some blurring regarding to y
direction (columns) of these images). Thus, we limit ourself by the reconstruction
accuracy presented in Table 3.1. In this Table we also present the numbers of the
used singular values τy and τx (for the regularization by truncation), computed
according to Eqs. (3.45) for the mentioned experimentally found tolerance τε.
Obviously the best result is in favor of the accurate Tikhonov RI.

The comparison of the amplitude reconstructions by the mentioned techniques
for AM, square pixels and noisy data σ=0.01 but for z = 1.15 · zf is illustrated
in Fig. 3.9. Here, it can be convinced in a better imaging of the Tikhonov RI
with respect to the regularization by truncation. The use of the approximate
solution in P1–P2 is dictated by two main reasons. Firstly, the approximate RI
is computationally simpler: the straightforward inverse of the huge matrix AHA
requires computing of SVD. Secondly, it is found that (depending on the choice of
the proper µ) there is no crucial difference in imaging between the accurate and
approximate RI, and the reconstruction accuracy in RMSE by Eq. (3.65) is the
greatest 5% better than by Eq. (3.66) for σ = 0.01 (20% for σ = 0) in case of
z = zf,y and this otherness decays not exceeding 4% (6%).

3.7 Choosing the Tikhonov regularization param-
eter

The regularization parameter µ in P1–P2 and [114, 115] is chosen experimentally
just for simplicity. However, it is well known that there are many parameter-choice
strategies, which are based on either an estimate of the norm of the perturbation
||uz − Aû0||2 = ||ε||2 (Morozov discrepancy principle, MDP [191, 156]) or the
extraction of some additional information from the given residual and regular-
ization errors: e.g., generalized cross validation [75], L-curve [93], U-curve [123],
quasi-optimality criterion [95], normalized cumulative periodogram [94].

MDP

If the complex-valued measurements are given, we could evaluate the noise level
σ̂ using, e.g., the Daubechies wavelets [66, cf. Eqs. (9), (10)]: the expectation

E〈‖ε‖2〉 = NxNyσ̂
2 [109, cf. Eq. (2.14)]. For the same image and pixel sizes at the

object and sensor planes in some cases8[109, §2.3, Theorem 2.6] the regularization
parameter µ can be found as the unique zero of the following function:

8 The regularization parameter µ is calculated provided limµ→0 ||uz −AA−1
µ uz ||22 ≤ ||uz −

AA−1
µ uz ||22 ≤ ||uz ||22 (see Eq. (3.65) for A−1

µ ).
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Figure 3.10: Choosing the regularization parameter µ by (left image) L-curve with re-
spect to the maximum curvature in the left corner, and by (right image) NCP (the
minimum of the function c(µ)) or MDP (zero of the function ρτε,σ̂(µ)). The correspond-
ing optimal µ are marked by bold geometrical elements. In the left image the line of the
L-curve going upward corresponds to smaller µ, and the curve to the right corresponds
to overregularized solutions with larger µ.

ρτε,σ̂(µ) =

rank(AHA)∑
s=1

(
χ2[s]

χ2[s] + µ2
((ΛH

y ⊗ΛH
x )uz)[s]

)2

+ (3.68)

+

NxNy∑
s=rank(AHA)+1

(
(ΛH

y ⊗ΛH
x )uz)[s]

)2 −NxNyσ̂2,

where the singular values in decreasing order of AHA are represented as the
following vector χ = vec{χx · χTy } = vec{χy · χTx }. Recall χy and χx are the

column vectors of the singular values of AH
y Ay and AH

x Ax, respectively. The
curve of the function ρτε,σ̂(µ) and the optimal µ by MDP are presented in Fig.
3.10.

Since it is difficult to isolate the impact of the diffraction propagation and
accurately estimate the measurement noise σ̂, then the first type of parameter-
choice methods, discrepancy principle based approach is not suitable. It is found
that MDP works well only for small noise level (in our synthetic tests σ < 0.02)
and small propagation distances, say z < 1.5 · zf . Moreover, the criterion function
(3.68) depends on the numerical rank rank(AHA) or, equivalently, on the proper
choice of the tolerance τε.

Further we present certain methods of the second type of the methods for
choosing regularization parameters, which is found to enable a good estimate of
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µ both for the noiseless and noisy data. It should be emphasized that all these
criteria could be easily computed in parallel.

GCV

Generalized cross validation (GCV) is based on the philosophy that if an arbitrary
element of uz is left out, then a regularized solution should predict this observation
well. The GCV estimate of the regularization parameter µ can be taken from the
measurement data by minimization of the GCV criterion function [75, 95, 180]

Γ(µ) =
||AA−1

µ AHuz − uz||22
trace(AA−1

µ AH−I)2
=
||c ◦ vec{ΛH

x UzΛ
∗
y}||22

(sum(c))2
, (3.69)

where A−1
µ is defined in Eq. (3.65), trace means the trace of a square matrix

defined by a sum of the elements on the main diagonal. c in Eq. (3.69) is a vector
constructed from the diagonal elements of the matrix

diag(c) = (Dy ⊗Dx)((DT
y Dy ⊗DT

xDx) + µ2I)−1(DT
y ⊗DT

x )− I.

The result of choosing of the regularization parameter µ by minimization of the
GCV criterion function Γ(µ) is presented in Fig. 3.11.

L-curve

Perhaps the most convenient graphical tool for analysis of discrete ill-posed prob-
lems is the so-called L-curve, which is a plot (for all valid regularization parameters
µ) of the norm ||A−1

µ AHuz||2 of the regularized solution versus the corresponding

residual norm ||uz −AA−1
µ AHuz||2. It is known that under certain assumptions

the L-curve

(||uz −AA−1
µ AHuz||2, ||A−1

µ AHuz||2 = (αµ, βµ)

for Tikhonov regularization (3.65) has two characteristic parts: a horizontal part,
where the regularized solution û0 is dominated by regularization errors and almost
vertical part, where û0 is dominated by residual errors. In this way, the L-curve
clearly displays the compromise between minimization of these two quantities,
which is the heart of any regularization method [91, 95, 109]. In many cases it is
advantageous to consider the L-curve in a log-log scale (lnαµ, lnβµ). Moreover,
the behavior of the L-curve is easily seen in such a scale. The optimal value of
µ in terms of the L-curve method is thought to be chosen corresponding to the
point of maximum curvature, as near the corner as possible (see Fig. 3.10). Any
one-dimensional optimization routine can be used to locate the value of that cor-
responds to the maximum curvature9. This point can be easily found numerically
by minimizing the curvature function of the L-curve [93, cf. Eq. (8)]

κ(µ) =
α̇µβ̈µ − α̈µβ̇µ(
α̇µ

2 + β̇µ
2
)3/2

, (3.70)

9 It can be, e.g., corner routine in [95].

 http://www2.imm.dtu.dk/~pch/Regutools/Software.zip 
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Figure 3.11: The optimal results of different parameter-choice methods and the corre-
sponding reconstruction accuracy by the chosen µ marked by bold geometrical elements.
The reconstruction quality is given in PSNR for AM (Lena test-image), z = 1.5 ·zf , noisy
data σ = 0.03. The curve of NCP and MDP criterion functions are given before in Fig.
3.10.

where the accents ˙ and ¨ in Eq. (3.70) denote the numerical differentiation oper-
ations of the first and second order, respectively, with respect to the regularization
parameter µ. The result of the minimization of this criterion function is depicted
in Fig. 3.11.

U-curve

Following [123, cf. Eq. (9)], the U-curve is defined as U(µ) = 1
αµ

+ 1
βµ

with

three characteristic parts: the “vertical”parts corresponding to the regularization
parameter, for which αµ and βµ are dominated by each other, and a “horizontal”
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part, which corresponds to the regularization parameter, where αµ and βµ are
close to each other. In our experiments we choose the regularization parameter µ
considering the U-curve in the log scale

lnU(µ) = ln(αµ + βµ)− ln(αµβµ). (3.71)

The behavior of such a lnU -curve is presented in Fig. 3.11. In our case
lnU(µ) has a large horizontal part for small µ and then U-like curve to the right
for relatively large µ with further very rapid increasing of lnU(µ). In Fig. 3.11 we
present only a left part of this U-like curve. Following the L-curve method we are
looking for a proper µ in the corner between the large horizontal part of lnU(µ)
and the left vertical part, namely: we take the point of maximum curvature9.

Quasi-optimality criterion

Quasi-optimality criterion (Q) [92, 156] means that the regularization parameter
µ is calculated by minimizing the following function [95, cf. Eq. (2.64)]

Q(µ) =

NxNy∑
s=1

(
χ2[s]

χ2[s] + µ2
· µ2

χ2[s] + µ2
((ΛH

y ⊗ΛH
x )uz)[s]

)2
1/2

. (3.72)

It is shown in Fig. 3.11 that the minimum of the criterion function Q(µ) can be
easily found, but only in a reasonable range of values, say µ ∈ [10−10, 1] as it is
emphasized in P1. For larger values of the regularization parameter, say µ > 1,
the curve of Q(µ) has a local maximum and then decreases monotonically.

NCP

The normalized cumulative periodogram (NCP) [95] is basically a cumulated power
spectrum, and its computation requires one fast Fourier transform per residual
vector (uz −AA−1

µ AHuz). The NCP criterion function is calculated according to
[94, Eq. (3.8)]. The expected NCP for white noise is a straight line, and we use the
minimum distance from the NCP to a straight line denoted by c(µ) as the criterion
to be minimize in order to choose the regularization parameter µ (see Fig. 3.10).
This criterion is found to work unstable for relatively large distances z > 2 · zf
and large amount of noise, say σ = 0.05, thus we recommend to use in general the
latter four mentioned methods: GCV, L- and U-curves, and quasi-optimality.

3.8 Conclusions

Here the developed two-matrix model for the accurate discrete diffraction propa-
gation is presented. The contribution of the author of this thesis is the analysis of
M–DDT (originated in P1), its properties and resulting reconstruction quality for
different parameters of the optical system: the size of the object and given mea-
surements, pixel size, propagation distances z, etc. It is of importance because
M–DDT (as well as F–DDT) is used in our phase-retrieval algorithms P3–P6.
Generally, M–DDT (F–DDT) may be employed in many application areas where
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the precise discrete-to-discrete model is dictated by the use of digital devices (in
SLM–CCD setups): e.g., for the wave field synthesis [111, 112] or holographic
projection [125, 126].

In Section 3.5.3 we refine certain aspects related to the straightforward ap-
proach of the backward propagation for ill-posed matrices using the regularization
by truncation. It is shown that in case of noiseless or a small amount of noise
the truncated SVD is a good alternative for relatively fast implementation of the
inverse of M–DDT, if the matrices of the eigenvectors are given. However, since
the proper numerical rank can not be accurately determined, and due to the use
of time-consuming SVD we typically use the Tikhonov RI model, which gives, in
addition, a better reconstruction accuracy, especially for large z and noisy data.

Figures 3.7 and 3.8 clarify our choice of a single in-focus distance in case of
rectangular images or pixels at the object and sensor planes: zf = min(zf,x, zf,y)
[P1, Eq. (51)].

Here we present the accurate M–DDT propagation model in the Kronecker
product form and visually explanation our suggestion to use the approximate
Tikhonov RI in P1. The accurate model systematically gives a better recon-
struction accuracy, but it is very difficult in use due to a very high dimension of
the transform matrix A.

It is also shown that the potential reconstruction accuracy can be predicted by
the numerical rank or conditioning of individual matrices related to the transform
of rows and columns of images (Eqs. (3.47)). It is connected to our further
prediction analysis via a sum of such individual transform matrices in Section 4.3.

Finally, in Section 3.7 we consider the choosing of the Tikhonov regularization
parameter µ : it is found that the conventional methods work quite well for the
interferometric model where (noisy) complex-valued measurements are given. The
problem consists of the noise level and ill-posedness of the transform matrix. In
general case GCV, L-/U-curve or quasi-optimal methods enables a proper choice
of µ. However, the situation is dramatically different in case of phase-retrieval
when the phase is not given and we deal with a number of different sensor planes.
This case of the parameter choosing is out of scope of this thesis but is our further
work to be done.





Chapter 4

Multi-plane iterative phase
retrieval

It has been mentioned that a conventional commodity sensor detects only the in-
tensity of the light wave field and the phase is lost in this physical measurements.
In practice we have no complex-valued observation uz in the single plane discrete
diffraction model (Fig. 3.1), and the object u0 can not be estimated straightfor-
ward by the backward wave field propagation according to, e.g., the conventional
propagation models (see Section 2.2) or by the inverse of M–DDT from Section
3.5. Following the idea of the numerical recalculation of the object wave field from
a number of intensity observations from Section 2.4, in this Chapter we consider
developed computational parallel iterative* multi-plane phase-retrieval algorithms,
initially with no incorporate object filtering, as they were improved. In Section
4.2 the initial multi-plane scenario of phase retrieval, the MF–DDT algorithm is
presented. Then, in Section 4.4 the augmented Lagrangian based parallel phase-
retrieval algorithm and its modification for the known object structure: for the
amplitude- (Section 4.4.3, the AL–A algorithm) and phase-only (Section 4.4.4 and
4.4.5, the gradient descent and Gauss–Newton AL–Ph algorithms) object to be
reconstructed.

4.1 Propagation models

A volumetric wave field is generated by a single transverse object wave field u0(ξ, η)
(see Fig. 2.2), however the 3D wave field is given only in a number of noisy intensity
observations {|ur(x, y)|2}Kr=1, at K different sensor planes parallel to the object
plane at distances zr = z1 +(r−1) ·∆z from it. Here z1 is the distance between the
object and the first sensor plane, ∆z is a fixed distance between the observation
planes. We need to recover the phase in {ur(x, y)}r and then reconstruct the
complex-valued object û0 using these complex-valued estimates ûr, r = 1, ...K.

Again, it is assumed that the wave field distributions at the object and sensor
planes are pixelated, i.e. they are pixel-wise invariant. Thus, we arrive at a
discrete-to-discrete model but now with a number of wave field distributions as

81
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Figure 4.1: Discrete model of the multi-plane phase retrieval. U0[l1, l2] and Ur[l
′
1, l
′
2]

(r = 1, ...K) are discrete 2D complex amplitudes at the object and measurement planes,
respectively (cf. Fig. 2.2). ∆z is a fixed distance between the measurement planes.

it is illustrated in Fig. 4.1. The link between the wave field distributions at the
object and sensor planes is given in the following general form

ur = Ar · u0, r = 1, ...K, (4.1)

where the column vectors u0 and ur denote the input and output of the coherent
imaging system and Ar is a transform matrix described the forward wave field
propagation from the object to the r-th sensor plane P4. Let us consider the
discrete diffraction propagation model used to calculate the sensor plane wave
field distributions ur.

4.1.1 Free space propagation

Let Mr be a discrete 2D distribution of the transfer function corresponding to the
free space diffraction propagation to the distance zr. It can be computed as the
sampled version of the conventional ASD Hr or the Fresnel transfer function Gr;
via the Fourier transform of the RS [196] or Fresnel diffraction kernels (with or
without averaging, see Section 3.2.3). Following the propagation model (3.36) the
result of the free space forward wave field propagation of the single size can be
represented as follows

ur = vec{F−1{F{U0} ◦Mr}}, r = 1, ...K. (4.2)

Note that in case of the double size Mr and realization via FFT (e.g., using
F–DDT as in P4–P5, [149]) the difference consists of the zero-padding of the
object ZPN ′x×N ′y{U0} and extraction of the center part of the resulting sensor
plane distribution according to Eqs. (3.25)–(3.28). The image size at the object
plane is taken as a multiple of 2 and the size of the sensor plane is defined by Eqs.
(3.38); N1 = N ′x +Nξ, N2 = N ′y +Nη.

The forward wave field propagation can be also calculated by M–DDT (see Eqs.
(3.16)–(3.17) in Section 3.2.1) what enables the accurate pixel-to-pixel mapping
u0 to ur for images and pixels of different sizes at the object and the r-th sensor
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planes. Again we obtain a single transform matrix in the form of the Kronecker
product

ur = Ar · u0, Ar = Xr ⊗Yr, r = 1, ...K, (4.3)

where Yr and Xr are the averaged M–DDT transform matrices with respect to y
(columns) and x (rows) directions of the object image. These transform matrices
are calculated according to Eqs. (3.14)–(3.13), but, in contrast to what we have
in Section 3.2.1, for different propagation distances zr. It is emphasized by the
additional subindices r of the transform matrices.

4.1.2 Observation model

Assume that we make a set of K experiments, and therefore a number of intensity
measurements at the sensor planes are given. Then, we can formulate the phase
problem to be solved as follows: reconstruct the complex-valued object distribution
u0 using the noisy intensity observations {or}r, which can be represented by the
following vector-matrix notation1

or = |ur|2 + εr, r = 1, ...K, (4.4)

where, in contrast to Eq. (3.41), the noise is assumed to be real-valued i.i.d. zero-
mean Gaussian (for simplicity and referring to the central limit theorem) with
the variance σ2

r, εr[l
′] ∼ N (0, σ2

r), independent for different r. The error εr is
considered as a result of various small degradation factors such as sensor noise.
Note that it can be also used more complex distributions for εr, such as Poissonian
or mixed Poissonian–Gaussian [66].

4.2 Multiple plane Frequency DDT (MF–DDT)

As it is mentioned in Section 2.4, the stability and convergence of the iterative
phase-retrieval algorithms as well as the accuracy of the resulting solutions are
not guaranteed in case of presence of noise. In P3 and [146] we developed our
initial multi-plane iterative phase-retrieval techniques which enables a significantly
improvement of the reconstruction quality by the aggregation of a number of the
object estimates computed in the parallel phase-retrieval procedure.

In Section 2.4.3 we discuss the reconstruction of the volumetric wave field by
the circular wave field propagation from one sensor plane to another one as it
is presented in [8, Fig. 2]. Then, Eq. (2.12), describing the modern successive
SBMIR phase-retrieval algorithm, can be rewritten in our vector-matrix notations
as follows

ûχ(t+1) = Aχ(t+1),χ(t) ·
[√

oχ(t)

|ûχ(t)|
◦ ûχ(t)

]
, t = 1, 2, ... (4.5)

where Aχ(t+1),χ(t) is the transform matrix of the wave field propagation from the
χ(t)-th to χ(t + 1)-th sensor plane, and the index of the sensor plane is defined

1 In order to avoid negative values of or[l′], in our numerical simulations we generate the
observations as or[l′] = max(|ur[l′]|2 + εr[l′], c0), where c0 is a small positive DC constant
(typically c0 = 10−4).
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by Eq. (2.13). The operation in the square brackets of Eq. (4.5) is element-

wise, i.e.

√
oχ(t)

|ûχ(t)|
is a vector obtained by the element-wise division of the vector

of the amplitude obtained from the given noisy intensity
√

oχ(t) at the χ(t)-th

sensor plane by the calculated amplitude |ûχ(t)|. Thus,

[√
oχ(t)

|ûχ(t)|
◦ ûχ(t)

]
is a

vector computed by means of a replacement of the module of ûχ(t) by
√

oχ(t),
keeping the calculated phase at that plane. Moreover, the initial guess for the
phase can also be a random vector.

In contrast to successive phase-retrieval algorithms, we focus on the object
plane. A multi-plane variation of GS is derived from the LS estimation of u0

assuming that complex-valued wave field estimates at the sensor plane ur are
available. Following the variational maximum likelihood (ML) approach for the
Gaussian noise distribution in the observation model (4.4), the object reconstruc-
tion is formulated by the following criterion function to be minimized (cf. Eq.
(3.64))

J =

K∑
r=1

1

σ2
r

||ur −Ar · u0||22 + µ · ||u0||22, (4.6)

where σ2
r is the variance of the noise at the r-th sensor plane. The quadratic

term in Eq. (4.6) appears as the minus logarithm of the Gaussian likelihood
function corresponding to the propagation model (4.1). The following penalty
term is the regularization including prior information on the object distribution
u0 to be reconstructed. The regularization parameter µ in Eq. (4.6) defines a
balance between the residual error of the propagation model and a priori given
by the penalty. Numerous forms for the penalty are used in literature on digital
image processing derived from speculations varying from probabilistic modeling of
image distribution priors to heuristic constructions [91, 109], but in P3–P5 and
[146, 147] we again use a simple but efficient quadratic Tikhonov’s penalty [219]
as for M–DDT.

In P3 we originate the Multiple plane Frequency DDT (MF −DDT ) phase-
retrieval algorithm. In MF–DDT the wave fields at all measurement planes are

Algorithm: MF −DDT
Input: {or}Kr=1

Initialization: u0
0

Repeat for t = 0, 1, 2, ...
Repeat for r = 1, ...K
1. Forward propagation:
utr = Ar · ut0
End on r
2. Object update:

ut+1
0 =

(∑K
r=1

1
σ2
r
AH
r Ar + µ · I

)−1

·
∑K
r=1

1
σ2
r
AH
r ·
[√

or
|utr|
◦ utr

]
=

=
∑K
r=1

1
σ2
r
A−1
µ AH

r ·
[√

or
|utr|
◦ utr

]
End on t
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computed by the free space forward diffraction propagation (Step 1) using M–DDT
or F–DDT. The object update (Step 2) is computed from the minimum condition
∂
∂u∗0
J =

∑K
r=1

1
σ2 [AH

r Aru0 − Arur] + µ · u0 = 0. The amplitude is kept to be

equal to the square root of the noisy intensity from the sensor plane observation
similar to SBMIR (4.5) and the phase is iteratively replaced.

Note that the object wave field reconstruction in MF–DDT can be interpreted
as the summation of K object estimates calculated by the backward propagation
of {utr}r with the transform matrices A−1

µ AH
r . In contrast to Eq. (3.65), we

calculate the inverse of a sum of the averaged transform matrices AH
r Ar,

A−1
µ =

(
K∑
r=1

1

σ2
r

AH
r Ar + µ · I

)−1

, (4.7)

where K ≥ 1 and the size of the matrix A−1
µ is NxNξ ×NyNη.

In case of well conditioning and invertibility of the propagation transform ma-
trices (e.g., for small distances z1 < zf or if we use ASD instead of M–DDT)

AH
r Ar = I and no regularization is required, µ = 0. If σ2

r = σ2 ∀r, then A−1
µ = σ2

K
∀r and the MF–DDT algorithm has much simpler form [P4, cf. Eq. (5)]

utr = Ar · ut0, t = 0, 1, ... (4.8)

ut+1
0 =

1

K

K∑
r=1

AH
r ·
[√

or
|utr|

◦ utr

]
.

4.3 Conditioning and reconstruction accuracy

It is found that the quality of phase retrieval can be indicated by the numerical
rank (rank(

∑K
r=1 AH

r Ar)) or conditioning number (cond(
∑K
r=1 AH

r Ar)) of a sum
of averaged transform matrices analogically to the way it is presented in Section
3.5.2. The interesting point is that despite the decrease of rank(

∑K
r=1 AH

r Ar),
K > 1, the behaviour of rank or cond for z1 > zf looks similar to what we have
for K=1. For z1 < zf , however, rank takes its maximum value (see Fig. 4.2
and Fig. 4.4, for K=5), and cond significantly decreases (see Fig. 4.3 and Fig.
4.5). As before, larger rank or smaller cond corresponds to a better reconstruction
accuracy: see [P4, Fig. 2 and Table 1] for z = 1

2 · zf and K = {3, 5, 10}.
In general, due to the very large dimension of the transform matrices Ar,

it is difficult to calculate rank or cond for the sum of AH
r Ar ∈ CNξNη×NξNη .

However, we have found that rank(
∑K
r=1 XH

r Xr)·rank(
∑K
r=1 YH

r Yr) can be used

as a good evaluation of rank(
∑K
r=1 AH

r Ar). Indeed, since rank(Xr ⊗ Yr) =
rank(Xr) · rank(Yr) [99] and

K∑
r=1

AH
r Ar =

K∑
r=1

(XH
r Xr ⊗YH

r Yr) = (4.9)

=

(
K∑
r=1

XH
r Xr

)
⊗

(
K∑
r=1

YH
r Yr

)
−

K∑
s,r=1
s6=r

(XH
s Xs ⊗YH

r Yr),
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H
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H
r Yr for K = {1, 5}, ∆z = 0.5 µm, zf = 4.1 mm, square

images (Nξ = Nη = 48) and pixels (∆ξ = ∆η = 6.7 µm) of the same size at the object
and sensor planes.

then rank(
∑K
r=1 AH

r Ar) can be bounded as

rank

(
K∑
r=1

XH
r Xr

)
rank

(
K∑
r=1

YH
r Yr

)
≤ rank

(
K∑
r=1

AH
r Ar

)
+ (4.10)

+ rank

 K∑
s,r=1
s6=r

(XH
s Xs ⊗YH

r Yr)

 ≤ K∑
r=1

rank(XH
r Xr)rank(YH

r Yr),
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In practice

rank

(
K∑
r=1

XH
r Xr

)
rank

(
K∑
r=1

YH
r Yr

)
−rank

 K∑
s,r=1
s6=r

(XH
s Xs ⊗YH

r Yr)

 (4.11)

is often negative and therefore Eq. (4.11) is useless as the lower bound for

rank(
∑K
r=1 AH

r Ar).
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Thus, we omit the second term and arrive at

rank

(
K∑
r=1

XH
r Xr

)
rank

(
K∑
r=1

YH
r Yr

)
≤ rank

(
K∑
r=1

AH
r Ar

)
. (4.12)

Fig. 4.2 demonstrate the use of Eq. (4.12). In Fig. 4.3 it is shown that an
inequality similar to Eq. (4.12) can be used for the conditioning numbers with
respect to the individual transform matrices XH

r Xr and YH
r Yr too.

Since for z = zf the transform matrices should be well-posed and no regular-
ization should be required, then the tolerance τε used for the calculation of rank
is taken with respect to z = zf as follows

τε = max
τε

(τε : rank(XH
1 X1) · rank(YH

1 Y1) = Nξ ·Nη). (4.13)

In Fig. 4.4 we present the comparison of the computed numerical ranks for the
tolerance τε = 10−3.8 found according to Eq. (4.13) and τε = 10−12 as before in
our experiments with the M-DDT matrices in Chapter 3.5. It can be seen that for
smaller tolerance rank(

∑K
r=1 XH

r Xr ⊗
∑K
r=1 YH

r Yr) becomes only slightly larger
but it may lead to an uncertainty in the behavior of the numerical rank in the
case when the propagation distance is near zf or z < zf . For instance, we have
mentioned that for say z = 1.05 · zf there is no perfect reconstruction so rank
should indicate that.

A proper selection of the regularization parameter µ is an important point of
the variation formulation in inverse imaging. However, it is difficult to use the
straightforward parameter-choice methods, like the L-curve or U-curve mentioned
in Section 3.7 for the multiple plane phase-retrieval scenario. Moreover, it is
hard to realize the direct computation of the inverse of A−1

µ (Eq. (4.7)) due to
its very large dimension. Thus, the Tikhonov parameter µ in P3–P5 and [146,
147] is chosen experimentally, and the analysis of the choosing the regularization
parameter is beyond the scope of this thesis.

4.4 Augmented Lagrangian technique

It is found that in case of noiseless data (σ = 0) or small amount of noise (say, σ =
0.01) the parallel MF–DDT phase-retrieval algorithm gives a better reconstruction
accuracy comparing with the successive one by example of SBMIR (more details
are given in P3 and [146]). However, the situation is dramatically different in
general case with a significant noise level of the intensity observations σ > 0.01
and z > zf resulting in strongly ill conditioning of the diffraction propagation
operators.

The regularization only is found not to be enough2 – some additional constants
related to both the wave field amplitude and phase (or to the real and imaginary
parts) are required in order to balance the accurate forward wave field propagation
and fitting to the given observations.

2 Proper regularization parameters for MF–DDT and the augmented Lagrangian based phase-
retrieval algorithm are chosen experimentally. The corresponding Matlab code for phase retrieval
is available on the project web page [1].
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4.4.1 Variational formulation of phase retrieval

Let us consider the variational ML formulation of the augmented Lagrangian based
phase-retrieval algorithm with respect to noisy measurements. The straightfor-
ward setting for the Gaussian noise distributions in the observation model (4.4)
results in the following criterion (cf. Eq. (4.6))

J =
∑
r

1

2σ2
r

||or − |ur|
2||22 + µ · ||u0||22, (4.14)

where the first summand is the quadratic fidelity term corresponding to the obser-
vation model (see P4 for metrics for the fidelity terms) and the second term is the
Tikhonov regularization. Using this new criterion (4.14) we require the accurate
forward wave field propagation (4.1), and formulate the object reconstruction as
the following constrained optimization

û0 = arg min
u0

K∑
r=1

1

2σ2
r

||or − |ur|
2||22 + µ · ||u0||22 (4.15)

subject to ur = Ar · u0, r = 1, ...K.

The regularization parameter µ in Eq. (4.15) defines a balance between the
prior information on the object and the fitting of calculated intensities of the wave
fields at the sensor planes to the given observations. If µ = 0 the solution û0

minimizes
∑
r

1

2σ2
r

||or − |ur|2||22 ignoring the fact that the data {or}r are noisy.

It can result in noisy and non-smooth û0. If µ > 0 and (comparatively) large,
then the noise effects are well suppressed but the solution û0 can be oversmoothed
and important features lost. The additional constraint corresponds to the forward
propagation of the object to different sensor planes. The constrained optimization
problem (4.15) can be represented using the augmented Lagrangian [98, 185] so
the criterion (with complex-valued variables) to be minimized is of the form

JAL({or},u0, {ur}, {Λr}) =

K∑
r=1

1

σ2
r

[
1

2
||or − |ur|2||22 + (4.16)

+
1

γr
||ur −Ar · u0||22 +

2

γr
Re{ΛH

r (ur −Ar · u0)}] + µ · ||u0||22,

where {Λr} ∈ CNxNy are the Lagrange multipliers. We refer to [162, Chapters
15–17] for more details on the theory of the augmented Lagrangian method.

In Eq. (4.16) the constraint ur−Ar ·u0 = 0 is used both in the quadratic and
linear terms with the positive penalty coefficients 1

γr
. If we keep only the quadratic

terms the augmented Lagrangian becomes the penalty criterion. As a rule it leads
to computational difficulties because this criterion can be very ill conditioned. If
we keep only the linear term the augmented Lagrangian becomes the standard
Lagrangian. However, the saddle point of this standard Lagrangian is unstable.
It results in the problems of numerical solutions. The stability of the saddle point
of the augmented Lagrangian is one of the principal advantages of this criterion
[74]. Note that the linear terms 1

γr
ΛH
r (ur − Ar · u0) and 1

γr
ΛT
r (ur − Ar · u0)∗
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in JAL are mutually conjugate, i.e. we control the real and imaginary part of the
discrepancy ur −Ar · u0.

4.4.2 Augmented Lagrangian algorithm (AL)

A search of this saddle point requires the minimization of the criterion (4.16) on u0

and {ur}, and maximization on the vectors of the Lagrange multipliers {Λr}. The
optimization of the AL criterion can be realized by partitioning of the variables
u0 and {ur} into several blocks according to their roles following the alternating
direction method of multipliers (ADMM, see, e.g., [2, 46]) and optimizing of (4.16)
with respect to each block by fixing all other blocks at each inner iteration [19] as
in the following algorithm

Repeat for t = 1, 2, ... (4.17)

Repeat for r = 1, ...K

ut+1
r = arg min

ur
JAL(or,u

t
0,ur,Λ

t
r)

Λt+1
r = Λt

r + αr · (utr −Ar · ut0)

End on r

ut+1
0 = arg min

uo
JAL({or},u0, {ut+1

r }, {Λt
r})

End on t

It leads to the iterative parallel augmented Lagrangian (AL) based algorithm [P4,
cf. Eqs. (21)] presented below.

Algorithm: AL
Input: {or}Kr=1

Initialization: u0
0, {Λ0

r}Kr=1

Repeat for t = 0, 1, 2, ...
Repeat for r = 1, ...K
1. Forward propagation:

u
t+1/2
r = Ar · ut0

2. Fitting to observations:

ut+1
r [l′] = G(or[l

′],u
t+1/2
r [l′],Λt

r[l
′]) ∀l′

3. Lagrange multipliers update:

Λt+1
r = Λt

r + αr · (ut+1
r − u

t+1/2
r )

End on r
4. Object update:

ut+1
0 =

(∑K
r=1

1
γrσ

2
r
AH
r Ar + µ · I

)−1

·
∑K
r=1

1
γrσ

2
r
AH
r · (ut+1

r + Λt
r)

End on t

Note that the optimization on the Lagrange multipliers {Λt
r} in Eqs. (4.17) is

produced in the gradient direction ∂JAL/∂Λ∗r = 0. The updating step αr ∈ [0, 1]
[162] is taken to improve the convergence of AL. The derivation of the augmented
Lagrangian based phase-retrieval algorithm, namely: the optimization of JAL on
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Figure 4.6: Convergence of the MF–DDT P3 and AL P4 algorithms in case of the
amplitude reconstruction from noisy (σ = 0.02) and noiseless intensity observations for
z = 2 · zf . The RMSE (solid) curves for MF–DDT are erratic, and for noisy data RMSE
starts to monotonically increase (thick solid curve), i.e. MF–DDT diverges.

Figure 4.7: Amplitude reconstruction by MF–DDT and AL (100 iterations) from noisy
and noiseless measurement data for z = 2 · zf , K = 5, AM. The first row corresponds
to the amplitude estimates reconstructed from noisy data (σ = 0.02) by (a) AL P4,
µ = 0.0025, RMSE(|û0|)=0.048 and (b) MF–DDT P3, µ = 0.05, RMSE(|û0|)=0.062. In
the second row there are results obtained from noiseless observations: (c) AL, µ = 0.0005,
RMSE(|û0|)=0.041 and (d) MF–DDT, µ = 0.025, RMSE(|û0|)=0.044.



92 4. Multi-plane iterative phase retrieval

u0 and ur according to the minimum condition ∂JAL/∂u∗0 = 0 and ∂JAL/∂u∗r = 0,
respectively, is presented in Appendices A.1 and A.2.

The initialization concerns the object (e.g., u0
0[l] = 1

2 ) and Lagrange multipliers
vectors (e.g., Λ0

r[l] = 0). In Step 1 of AL we calculate the forward propagation
of the object estimate ut0 to K sensor planes. Step 2 gives the updates ut+1

r

to “reconcile” the estimates u
t+1/2
r numerically with the observations or. The

operator defining this update ut+1
r is denoted by G and described by Eqs. (A.4)–

(A.6). Step 3 returns the update for the Lagrange multipliers Λt+1
r similar to

what we have in Eqs. (4.17). Step 4 gives the update for the object wave field
calculated from the corrected image estimates ut+1

r and the Lagrange multipliers
Λt
r. Note that Step 4 has the structure that is typical for the parallel algorithm:

the multiple estimates of u0 obtained from K sensor planes are aggregated into
the final update for the object reconstruction.

It can be seen that the main difference of the AL algorithm from MF–DDT
consists of the the estimation of the wave fields at the sensor plane3 (Step 2 of
AL). In Figs. 4.6 and 4.7 the comparison of the amplitude reconstruction quality
obtained by MF–DDT and AL phase-retrieval algorithms P4, [147] for z = 2 · zf
and the synthetic noisy with σ = 0.02 are presented. The forward and backward
propagations are always performed using F–DDT with averaging. It is obvious
that the reconstruction imaging is in favour of AL for both noisy and noiseless
data (left column in Fig. 4.7). Here we would like to emphasize the divergence
of MF–DDT (thick curve, Fig. 4.6) in case of larger amount of noise and strong
ill-posedness of the transform matrix. Moreover, it is found that for larger z or σ
the reconstruction imaging becomes even worse (cf. Fig. 4.7(b)). Thus, AL, as our
further development of the parallel phase-retrieval algorithm, becomes significant
more powerful tool for the object wave field reconstruction from noisy data and
large propagation distances.

The discussion about the object reconstruction quality by the AL algorithm
for AM and PM and comparison of AL with SBMIR are presented in [P4, Section
3] and [147, Section 4]. Evidently that a priori information on the object can
significantly improve the reconstruction quality, and further we consider some
modification of the AL algorithm developed especially for known object structures,
for AM and PM.

4.4.3 AL for amplitude object (AL–A)

Note that the object estimation in the AL algorithm is presented for an arbitrary,
complex-valued object (3.1) by means that no prior information on its structure
is given. In many cases the object phase is known (say, the phase is constant in a
thin glass transparency), and the only unknown variable is the object amplitude.

For the amplitude modulation of the object (AM) u0 = a0, φ0[l] = 0 the
analytical solution of the object update (Step 4 of AL) is defined by ∂JAL/∂a0 = 0,

3 In [118, Appendix B] it is shown that for small noise level σ and/or large γr (i.e. the strong
domination of the fidelity terms related to the forward propagation) the updating of utr can be
significantly simplified: {utr} can be computed by the replacement of the amplitude estimates
with the given (noisy) measurements as in MF–DDT or SBMIR. Figs. 4.6 and 4.7 for σ = 0
prove our words that this modification may be used only for well-posed transform matrices or,
at least, for distances close to zf .
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Figure 4.8: Amplitude reconstruction by (a-c) the AL phase-retrieval algorithm and by
(d-f) its modification AL–A developed for AM (see Eq. (4.18)). The amplitude estimates
are given for z = 2 · zf , σ = 0, µ = 0.005 and different number of observations (from left
to right) K = {3, 5, 10}. Reconstruction accuracy for (a/b/c) is PSNR=18.7/22.8/24;
and for (d/e/f) PSNR=26/26.1/26.2.
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Figure 4.9: Convergence rate of the AL and AL–A phase-retrieval algorithms for z = 2·zf
and K = {3, 5, 10} for the experiments described in [P4, Fig. 2 and Table 1].
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namely the optimal solution of the amplitude estimate is

at+1
0 =

(
K∑
r=1

1

γrσ
2
r

Re{AH
r Ar}+ µ · I

)−1

·
K∑
r=1

1

γrσ
2
r

Re{AH
r (ut+1

r + Λt
r)}. (4.18)

The derivation of Eq. (4.18) is given in Appendix A.2.1. Practically, the only
difference is that at each iteration we should keep only the real part of the object
estimate ut+1

0 and the imaginary part (object phase) should be always set equal
to zero. Thus, we arrive at the modification of the AL algorithm for AM, denoted
by AL−A.

Algorithm: AL−A
Input: {or}Kr=1

Initialization: a0
0, {Λ0

r}Kr=1

Repeat for t = 0, 1, 2, ...
Repeat for r = 1, ...K
1. Forward propagation:

u
t+1/2
r = Ar · at0

2. Fitting to observations:

ut+1
r [l′] = G(or[l

′],u
t+1/2
r [l′],Λt

r[l
′]) ∀l′

3. Lagrange multipliers update:

Λt+1
r = Λt

r + αr · (ut+1
r − u

t+1/2
r )

End on r
4. Object amplitude update:

at+1
0 =

(∑K
r=1

1
γrσ

2
r

Re{AH
r Ar}+ µ · I

)−1

·
∑K
r=1

1
γrσ

2
r

Re{AH
r (ut+1

r + Λt
r)}

End on t

In contrast to AL, the initialization concerns (except the Lagrange multipliers)
the object amplitude only (e.g., a0

0[l] = 1
2 as before), i.e. we care only about the

object amplitude.

The visual comparison of the reconstruction quality by AL and AL–A is pre-
sented in Fig. 4.8: the top row corresponds to the AL amplitude reconstructions
for z = 2 · zf and different number of observations K = {3, 5, 10}. In the bottom
row we present the object amplitudes obtained by AL–A. It can be seen that the
AL–A results look much better than what we have by AL, but they are almost
identical in spite of various K. The convergence (in PSNR) for these settings
for both AL and AL–A are illustrated in Fig. 4.9. It is found that numerically
the reconstruction accuracy of AL–A is approximately two-three times better in
RMSE comparing with AL. Moreover the convergence of AL–A is much faster:
here 50 iterations is enough while the AL reconstruction even after 100 iterations
demonstrate worse imaging. All these results are computed for the Tiknonov reg-
ularization parameter µ = 0.005. Note also that even for insufficient K = 3 < 4
(see Section 2.4.2) the AL–A gives a good reconstruction quality.
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4.4.4 AL for phase object (AL–Ph): gradient descent algo-
rithm

Let us consider the phase-only object wave field, i.e. the object of the form u0 =
a · exp(iφ0), where a ∈ R+ is a (in general unknown) scalar variable. In out
experiments it is typically equal to 1.

Let us assume for a moment that a is known. Then, the minimum condition
on φ0 for JAL can be presented as follows (see Eq. (A.16) in Appendix A.2.2)

∂

∂φ0

JAL = 2 Im{(a · e−iφ0) ◦
K∑
r=1

1

γrσ
2
r

AH
r (Ar(a · eiφ0)− ur −Λr)} = 0. (4.19)

The update of the object phase at the t-th iteration is performed by the iterative
gradient descent algorithm due to a huge dimension of the transform matrices.
Provided the initial guess φ0

0,t = φt0 the object phase is calculated as follows

Repeat for s = 0, 1, 2, ...S − 1 (4.20)

us0,t+1/2 = a · exp(iφs0,t)

∆φs0,t = 2 Im{(us0,t+1/2)∗ ◦
K∑
r=1

1

γrσ
2
r

AH
r (Ar(u

s
0,t+1/2)− ut+1

r −Λt
r)}

φs+1
0,t = φs0,t − β ·∆φ

s
0,t

End on s

where us0,t+1/2 is the auxiliary estimate of the object, ∆φs0,t is here the phase

gradient. The result of Eqs. (4.20) for the t-th iteration is the object phase
estimate at the (t + 1)-th iteration, in terms of Eq. (4.20) ut+1

0 = a · exp(iφS0,t).
In P5 the number of iterations S and the updating step β are fixed for simplicity.
Since the fixed updating step may result in divergence of the algorithm, β could
be also defined as, e.g., a fractional step, i.e. the step size in the process of descent
is divided into a certain value.

If the magnitude of the object a is known, we use its true value, denoted in P5
as “a0”, i.e. ut+1

0 = a0 · exp(iφS0,t). If the scalar a is unknown, then the amplitude
estimate is calculated after the update of the phase as

χ =

K∑
r=1

1

γrσ
2
r

||Ar exp(iφS0,t)||22 + µ ·NξNη, (4.21)

at+1 =
1

χ

K∑
r=1

1

γrσ
2
r

Re{(exp(−iφS0,t))T ·AH
r (ut+1

r + Λt
r)}.

The derivation is presented in Appendix A.2.2. Thus, the object estimate is there-
fore of the form ut+1

0 = at+1 · exp(iφS0,t).
Eqs. (4.20)–(4.21) define the modification of the AL algorithm for PM denoted

by AL− Ph with the conventional gradient descent method for the estimation of
the object phase. The initialization concerns both the object amplitude (e.g.,
a0 = 1

2 , if a0 is unknown) and the phase (it could be, e.g., a random or zero
vector).
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Algorithm: AL− Ph, gradient descent
Input: {or}Kr=1

Initialization: φ0
0,1 ≡ φ

S
0,0, a0, {Λ0

r}Kr=1

Repeat for t = 0, 1, 2, ...

â =

{
a0, if a0 is given
at, otherwise

Repeat for r = 1, ...K
1. Forward propagation:

u
t+1/2
r = Ar · [â · exp(iφS0,t)]

2. Fitting to observations:

ut+1
r [l′] = G(or[l

′],u
t+1/2
r [l′],Λt

r[l
′]) ∀l′

3. Lagrange multipliers update:

Λt+1
r = Λt

r + αr · (ut+1
r − u

t+1/2
r )

End on r
4. Object phase update:

φ0
0,t+1 = φS0,t

Repeat for s = 0, 1, 2, ...S − 1
us0,t+1 = â · exp(iφs0,t+1)

∆φs0,t = 2 Im{(us0,t+1)∗ ◦
∑K
r=1

1
γrσ

2
r
AH
r (Ar · us0,t+1 − ut+1

r −Λt
r)}

φs+1
0,t+1 = φs0,t+1 − β ·∆φ

s
0,t

End on s
5. Amplitude recalculation, if a0 is not given

χ =
∑K
r=1

1
γrσ

2
r
||Ar exp(iφS0,t+1)||22 + µ ·NξNη

at+1 = 1
χ

∑K
r=1

1
γrσ

2
r

Re{(exp(−iφS0,t+1))T ·AH
r (ut+1

r + Λt
r)}

End on t

In P5 we present the comparison of the wave field reconstruction of AL–Ph
(gradient descent) with AL and SBMIR. The AL–Ph algorithm demonstrates faster
convergence [P5, cf. Fig. 3] and significantly better reconstruction accuracy,
especially by example of the smooth Mexican Hat object [P5, cf. Fig. 5]. The
convergence of the object magnitude in case of a0={0.85, 1, 1.25} is illustrated
in [P5, Fig. 4]. It is found that a larger number of observations K leads to
a faster convergence, but results in significant oscillations around a0. Moreover,
these oscillations are larger for larger a0.

4.4.5 AL for phase object (AL–Ph): Gauss–Newton algo-
rithm

The Gauss–Newton (GN) method is a modification of the well-known Newton–
Raphson method used to solve (non-linear) LS problems, in particular for opti-
mization of criterion functions. Unlike Newton’s method, the GN algorithm has
the advantage that second derivatives, which can be challenging to compute, are
not required. Moreover, GN is essentially simpler because it is not so vulnera-
ble to the initial guess as Newton’s method. The GN algorithm of the object
phase recovering is also iterative and follows from the linearization of the residual
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Figure 4.10: Convergence of the phase-retrieval algorithms used for the reconstruction of
a phase-only object by AL (dashed-dotted curve); AL–Ph, gradient descent with the fixed
updating step β (dashed curve, [P5, cf. Fig. 3]); AL–Ph, Gauss–Newton method with
the fixed updating steps β and ζ (AL–Ph GN1, solid thin curve); AL–Ph, Gauss–Newton
method with the fractional steps β and ζ (AL–Ph GN2, solid thick curve); and SBMIR
([8], dotted curve). These results are obtained for z = 2 · zf and noisy measurements
σ=0.05, PM with the known a0=1, K=5, chessboard test-image. β and ζ in AL–Ph GN2
are divided by 2 and the number of iterations S and Q are doubled each 10 iterations.
The curves of PSNR for GN1 and GN2 are overlapped up to the 30th iteration.

Figure 4.11: Fragments of the phase reconstruction obtained using different phase-
retrieval algorithms: (a) by AL, PSNR=12.2, (b) by AL–Ph, gradient descent with the
fixed updating step β, PSNR =13.9, (c) by AL–Ph, GN1 with the fixed updating steps β
and ζ, PSNR=12.7, (d) by AL–Ph, GN2 with the fractional steps β and ζ, PSNR=21.1,
(e) by SBMIR, PSNR=4.7. These results are given for z = 2 ·zf and noisy measurements
σ=0.05, PM with the known a0=1, K=5, chessboard test-image after 100 iterations, see
Fig. 4.10, [P5, cf. Fig. 2].



98 4. Multi-plane iterative phase retrieval

ur −Ar · u0 in the AL criterion (4.16) as

ur −Ar · u0 ≈ ur −Ar · [a · exp(iφ0)]− ∂

∂φ0

(Ar · [a · exp(iφ0)]) ·ϕ0, (4.22)

i.e. it is obtained by ignoring the second-order derivative terms (only the first two
terms of the Taylor series are taken). Here ϕ0 is a small phase increment. Thus,
the forward wave field propagation can be presented by (see Eq. (A.20))

ur = Ar · [a · exp(iφ0)] + iArΓ ·ϕ0, (4.23)

where Γ is the diagonal matrix with the object vector components in the main
diagonal, Γ = diag(a · exp(iφ0)) ∈ CNξNη×NξNη . Then, the phase update in terms
of the GN algorithm is of the form (cf. Eq. (4.20))

φt+1
0 = φt0 + β ·ϕ0 = φt0 −

β

2
·Υ−1 · ∂

∂φ0

JAL = (4.24)

= φt0 − β ·

(
K∑
r=1

1

γrσ
2
r

Re{ΓTAT
r A∗rΓ

∗}

)−1

×

× Im{(ut0)∗ ◦
K∑
r=1

1

γrσ
2
r

AH
r (Aru

t
0 − ut+1

r −Λt
r)},
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Figure 4.12: Cross-section of the reconstructed phases by (dashed-dotted curve) by AL,
PSNR=12.2; by (solid thin curve) AL–Ph, GN1 with the fixed updating steps β and ζ,
PSNR=12.7 and by (solid thick curve) AL–Ph GN2 with the fractional steps β and ζ,
PSNR=21.1. The true phase is depicted by a dashed curve. These results are presented
for experiments illustrated in Fig. 4.11.
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where β is the updating step and the matrix

Υ =

K∑
r=1

1

γrσ
2
r

Re{ΓTAT
r A∗rΓ

∗} ∈ CNξNη×NξNη (4.25)

is a sort of approximation of the Hessian matrix, computed for Γ = diag(a ·
exp(iφt0)). The phase increment ϕ0 in Eq. (4.24) is derived in Appendix A.3.

Due to a huge dimension of the matrix Υ (Eq. (4.25)) we use an additional
iterative procedure to compute the phase increment. Thus, we arrive at the fol-
lowing algorithm, which results in the update of the object phase estimate φ0,t at
the t-th iteration

Repeat for s = 0, 1, 2, ...S − 1 (4.26)

us0,t = at · exp(iφs0,t)

∆φs0,t = Im{(us0,t)∗ ◦
K∑
r=1

1

γrσ
2
r

AH
r (Aru

s
0,t − ur −Λr)}

Γs = diag(at · exp(iφs0,t)), Υs =

K∑
r=1

1

γrσ
2
r

Re{(Γs)TAT
r A∗r(Γ

s)∗}

Repeat for q = 0, 1, 2, ...Q− 1

ϕq+1
0,t = ϕq0,t − ζ ·

[
Υs ·ϕq0,t + ∆φs0,t

]
End on q

φs+1
0,t = φs0,t + β ·ϕQ0,1

End on s

where Γs and Υs are the s-th iterations of the auxiliary (above mentioned) ma-
trices, ζ is a new updating step for the estimate of the phase increment ϕ0,t.
Together, Eqs. (4.21) and Eqs. (4.26) result in the AL–Ph phase-retrieval algo-
rithm with the phase estimation by the Gauss–Newton method. Here we denote
this algorithm “AL−Ph,GN” in order to distinguish it from the gradient descent
implementation from Section 4.4.4.

Thus, the main difference of the GN version of AL–Ph from the gradient de-
scent implementation consists of the calculation of the descent direction what may
essentially improves the phase reconstruction quality and the convergence rate
of the phase-retrieval algorithm, though the convergence of this algorithm is not
guaranteed.

In Fig. 4.10 we present the convergence of AL, SBMIR and various modification
of AL–Ph in case of the phase reconstruction from significantly noisy data (σ =
0.05) and ill-posed transform matrices (z = 2 · zf ). The result by the AL–Ph
algorithm with the fixed updating steps β and ζ is depicted with a solid thin curve
and denoted by GN1. It can be seen that this algorithm demonstrates the fastest
convergence, but after about 40 iterations the PSNR curve for this algorithm starts
to be erratic with some tendency to decrease.

In order to overcome this problem we take in AL–Ph fractional steps: each 10
steps we divide β and ζ by 2 and double S and Q. The result for the fractional
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Algorithm: AL− Ph, Gauss–Newton (GN)
Input: {or}Kr=1

Initialization: φ0
0,1 ≡ φ

S
0,0, ϕQ0,0 = 0, a0, {Λ0

r}Kr=1

Repeat for t = 0, 1, 2, ...

â =

{
a0, if a0 is given
at, otherwise

Repeat for r = 1, ...K
1. Forward propagation:

u
t+1/2
r = Ar · [â · exp(iφS0,t)]

2. Fitting to observations:

ut+1
r [l′] = G(or[l

′],u
t+1/2
r [l′],Λt

r[l
′]) ∀l′

3. Lagrange multipliers update:

Λt+1
r = Λt

r + αr · (ut+1
r − u

t+1/2
r )

End on r

φ0
0,t+1 = φS0,t

Repeat for s = 0, 1, 2, ...S − 1
4. Calculation of the phase gradient:

∆φs0,t = Im{(â · exp(−iφs0,t+1)) ◦
∑K
r=1

1
γrσ

2
r
AH
r ×

×(Ar(â · exp(iφs0,t+1))− ut+1
r −Λt

r)}
5. Calculation of the phase increment:

ϕ0
0,t+1 = ϕQ0,t

Γs = diag(at · exp(iφs0,t)), Υs =
∑K
r=1

1
γrσ

2
r

Re{(Γs)TAT
r A∗r(Γ

s)∗}
Repeat for q = 0, 1, 2, ...Q− 1

ϕq+1
0,t+1 = ϕq0,t+1 − ζ ·

[
Υs ·ϕq0,t+1 + ∆φs0,t

]
End on q
6. Update of the object phase:

φs+1
0,t+1 = φs0,t+1 + β ·ϕQ0,t+1

End on s
7. Update of the object amplitude, if a0 is not given

χ =
∑K
r=1

1
γrσ

2
r
||Ar exp(iφS0,t+1)||22 + µ ·NξNη

at+1 = 1
χ

∑K
r=1

1
γrσ

2
r

Re{(exp(−iφS0,t+1))T ·AH
r (ut+1

r + Λt
r)}

End on t

steps is marked by a solid thick curve and denoted by GN2. This modification
enables much better (about two times better) reconstruction accuracy of the object
phase: RMSE=0.232 for the fixed steps and RMSE=0.088 for fractional steps after
100 iterations. The reconstruction imaging is also in favor of AL–Ph GN2 with
fractional steps: it can be convinced in better imaging of this algorithm in Fig. 4.11
and Fig. 4.12, where the fragments of the reconstructed phases and corresponding
cross-sections are illustrated. Note that AL results in a smoothed phase estimate
and the use of fixed updating steps in AL–Ph GN1 leads to strong errors on the
border of the chessboard test-image. In general, the result of AL–Ph GN2 is more
contrast.

Since the optimization criterion in the AL based algorithm is nonconvex, the



4.4. Augmented Lagrangian technique 101

0 20 40 60 80 100

0,7

0,8
0,85

0,9

1

1,1

1,2
1,25

1,3

1,4

1,5

number of iterations

â
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Figure 4.13: Convergence of the object magnitude recovering by (dashed curve) AL–Ph,
gradient descent [P5, cf. Fig. 4] and by (solid curve) AL–Ph, GN1. These results are
given for PM with unknown a0={0.85,1,1.25}, z = 2 · zf , noisy measurements σ=0.05,
chessboard test-image and different number of observations: (left image) K=5, (right
image) K=10.

result is strongly depends on the initial guess of the algorithm. According to our
experiments, AL–Ph GN2 with fractional updating steps demonstrates the best
reconstruction accuracy for various initial guesses. However, the computational
complexity of the Gaussian–Newton AL–Ph algorithm is significantly higher com-
paring with the original AL or the gradient descent AL–Ph algorithm. The crucial
point is that due to very high dimension of the matrix Υ (Eq. (4.25)) we use an
additional loop for the calculation of the phase increment: in particular, at each
s-th step (see Eq. (4.26)) we perform K · N2

ξN
2
η + Q · NxNyN2

ξN
2
η multiplica-

tions and additions to calculate Υs and, in addition, Q ·N2
ξN

2
η operations to find

Υs ·ϕq0,t+1. The computational time (in averaged for one iteration) for the AL and
AL–Ph algorithms is presented in Table 4.1. These results are obtain by Monte
Carlo simulation with averaging over 50 samples.

It can be seen a linear growth of the computational time with respect to the

Table 4.1: Computational time (in seconds for one iteration) for AL, the gradient de-
scent AL–Ph and Gauss–Newton AL–Ph (AL–Ph GN1 with the fixed updating steps)
algorithms.

Algorithms
Nξ ×Nη K AL AL–Ph AL–Ph GN1
128×128 5 0.15 0.6 5.1
128×128 10 0.28 1.2 10.6
256×256 5 0.6 3.75 35
256×256 10 1.25 7.35 68.6
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dimension of the problem. Note, however, that the computational time for AL–Ph
increases faster than for AL because of additional loops. Moreover, this time may
increase in times in case of the fractional updating steps.

In Fig. 4.13 we illustrate the convergence of the gradient descent AL–Ph and
AL–Ph GN1 (with fixed updating steps) algorithms in case of recovering the object
magnitude â for PM, a0 = {0.85, 1, 1.25}. The GN1 version of the phase-retrieval
algorithm gives better convergence rate for both K = 5 and K = 10 comparing
with the gradient descent AL–Ph P5. However, it can be also seen that the
oscillations around a0 are more significant for GN1.

4.5 Conclusions

In this Chapter we firstly consider our initial development of the parallel itera-
tive MF–DDT phase-retrieval algorithm P3 with simultaneous aggregating of a
number of object estimates and therefore noise suppressing. The replacement of
the computed amplitudes of the wave field at the sensor planes by ones obtained
from measurements is used analogically to the successive SBMIR phase-retrieval
algorithm. Further we reformulate the optimization problem: provided the accu-
rate forward diffraction propagation we are looking for the fit of the calculated
intensity of the sensor plane wave field distribution to the observation. It results
in the augmented Lagrangian phase-retrieval algorithm originated in P4. The use
of a priori information on the object is firstly presented in P5 by example of the
modification of the AL algorithm for PM. The AL–Ph phase-retrieval algorithm
demonstrates a significant improvement of the reconstruction accuracy (about two
times in RMSE). In this text we gather all of these algorithms together and present
them in order of their development. Note that in Chapter 4 we have no additional
object filtering.

In Section 4.3 it is shown that the potential object reconstruction accuracy from
K wave field estimates at the sensor planes can be indicated by the rank of the
sums of individual matrices rank(

∑K
r=1 XH

r Xr) · rank(
∑K
r=1 YH

r Yr), where the
transform matrix of the diffraction propagation to the distance zr is Ar = Xr⊗Yr.
This handy tool can clarify the resulting good imaging by AL for z = 1

2 · zf and
z = zf : compare the maximum value of the numerical rank in Fig. 4.4 with very
good reconstruction quality in [P4, cf. Fig.2, Table 1].

In Section 4.4.3 we introduce the modification of the AL algorithm developed
for the amplitude-only object denoted by AL–A. Figure 4.9 demonstrate a better
convergence rate and reconstruction accuracy (about 50% in RMSE for K=5). In
Section 4.4.5 we present the modification of AL for the phase-only object, where the
phase update is computed by the Gauss–Newton method (this algorithm is denoted
by AL–Ph GN). It is shown that AL–Ph GN converges much faster comparing with
the gradient descent based AL–Ph algorithm or the AL algorithms (especially with
fractional updating steps, see Fig. 4.10) and gives much sharper, contrast object
phase reconstruction (see Fig. 4.11).



Chapter 5

Phase retrieval with sparse
object regularization

It is found P3 that the spatially adaptive regularization (realized via BM3D filter
[34, 35]) results in a significant improvement in imaging. Thus, sparse modeling
is decided to be incorporated into the AL phase-retrieval algorithm because of
high performance and flexibility of this technique [48]. Sparse modeling of the
object is recognized to allow overcoming the loss of information related to the
ill-posedness of forward propagation operators, wiping out different corrupting
artifacts, filtering noise, and therefore enhancing the resulting quality. In this
Chapter we consider the improvement of the reconstruction accuracy and imaging
by the incorporate separate filtering of the object amplitude and phase (numerical
experiments and some additional information can be found in P5–P6, [149]).
Moreover, here we also discuss the use of the object sparse modeling in a more
sophisticated phase-retrieval method with compensation of distortions arising sue
to the forward diffraction propagation in the 4f optical system P7.

5.1 Observation models

In Section 2.2 we consider the forward wave field propagation computed via the
RS and Fresnel diffraction integral, by the ASD or Fresnel transfer functions,
and the result of the free space diffraction propagation, precisely the intensity
measurements of diffraction patterns are (fairly) obtained at different distances
from the object. Despite the simplicity of the mathematical apparatus of the free-
space setup, in practise the optical system is bulky and expensive due to the use of
a motorized sensor. In addition, the recording process of intensity measurements
is relatively slow due to the movement of the sensor.

Note that the transfer function of ASD (Eq. (1.44)) or its Fresnel approxima-
tion (Eq. (1.67)) describes a pure phase modulation. It is shown in [4, 53] that a
4f configuration can be used to imitate the lensless optical system for the multi-
plane phase-retrieval scenario. The forward wave field propagation, presented in
Fig. 2.2, can be realized by the phase modulation of the Fourier transform of the
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Figure 5.1: Experimental 4f optical setup for measurement recording [53]. The lenses
L1 and L2 in the 4f configuration provides an accurate propagation of the transverse
object wave field u0(ξ, η) to the parallel observation (sensor) plane giving the wave field
ur(x, y). An optical mask with the complex-valued transmittance Mr(

v1
λf
, v2
λf

) located
at the Fourier plane (a phase modulating SLM) enables linear filter operations.

object wave field using the phase-only LC-SLM placed in the Fourier domain of
the 4f optical system as it is illustrated in Fig. 5.1. The principal feature is that
in this case the sensor plane is immobile and fixed at the distance 4f from the
object plane.

5.1.1 4f configuration in phase-retrieval scenario

The lenses L1 and L2 with the focal length f arranged in the 4f configuration
provides an accurate propagation of the object wave field u0(ξ, η) to the par-
allel measurement plane. Let us consider an ideal optical path with no distor-
tions/aberrations. It can be shown (see Appendix B.1) that the wave field at the
Fourier plane (at the back focal plane of the first lens L1) is given as follows

uF

(
v1

λf
,
v2

λf

)
=
ei2kf

iλf
F{u0(ξ, η)}

(
v1

λf
,
v2

λf

)
, (5.1)

where v = (v1, v2) ∈ R2 are the spatial frequencies. If the optical mask (SLM)
inserted at the Fourier plane has the complex-valued transmittance Mr(

v1

λf ,
v2

λf ),
then the output of the optical system is defined as

ur(x, y) =
ei2kf

iλf
F{uF

(
v1

λf
,
v2

λf

)
· Mr

(
v1

λf
,
v2

λf

)
}(−x,−y) = (5.2)

= −ei4kf · {u0 ~ F{Mr

(
v1

λf
,
v2

λf

)
}}(−x,−y), r = 1, ...K.

Depending on the used optical masks {Mr(
v1

λf ,
v2

λf )}, a number of various wave

field distributions {ur}Kr=1 can be generated at the sensor plane corresponding to
different complex-valued transmittances. For instance, the imitation of the free
space propagation via the Fourier transform of complex amplitudes of the object
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and the sensor plane wave field distributions is of the form [118]

Ur

(
v1

λf
,
v2

λf

)
= −ei4kf · U0

(
− v1

λf
,− v2

λf

)
· Mr

(
− v1

λf
,− v2

λf

)
, (5.3)

where r = 1, ...K and, taking into account that the Fourier transforms are given
in a scaled spatial coordinates1, the optical mask corresponding to ASD is [53]

Mr

(
v1

λf
,
v2

λf

)
= exp

ikzr
√

1− v2
1

f2
− v2

2

f2

 (5.4)

for various distances zr of the wave field propagation.

5.1.2 Discrete modeling of 4f configuration

The discrete model of Eqs. (5.1)–(5.2) provided the sampling conditions

1

Nξ
=

∆1∆ξ

λf
,

1

Nη
=

∆2∆η

λf
,

1

N1
=

∆1∆x

λf
,

1

N2
=

∆2∆y

λf
, (5.5)

can be represented in the form

ur = −ei4kf · vec{F{F{U0} ◦Mr}}, r = 1, ...K. (5.6)

The 2D transfer function Mr in Eq. (5.6) by means of the real optical mask (see
Eq. (B.10) in Appendix B.2) is very different from what is used in the free space
propagation model (Eq. (4.2)) due to a finite size of the used phase modulating
LC-SLM and the fact that the active area of SLM cells is, in general, smaller than
the full size of a pixel (i.e. the fill factor is not 100%). Further the discrete models
of the diffraction propagation in 4f configuration (5.6) is applied in order to obtain
the required vectors of intensity measurements {or} (see Eq.(4.4)).

For simplicity, we use Eq. (B.9) for both the synthetic numerical experiments
(in P6, [149]) and processing of experimental data from the 4f optical system with
a phase modulating LC-SLM in the Fourier domain (in P6–P7). In the second case
the changes from the theoretically predicted result of the wave field propagation
and nonidealities related to, e.g., the bandlimitedness of the transfer function
or various distortions in the optical path of the used coherent imaging system
(Fig. 5.1) are considered as disturbances in the optical path2 to be estimated and
compensated.

5.2 Sparse modeling and BM3D filtering

According to the sparsity hypothesis it is assumed that the object amplitude
a0 ∈ Rn and phase φ0 ∈ Rn can be separately approximated with small num-
bers of non-zero components of basis functions (n = NξNη). Note that there is
no prior information on the object modulation as before in AL–A (Section 4.4.3)

1 Substituting v1
λf

= η1, v1
λf

= η1 in Eq. (1.48) we obtain Eq. (5.4).
2 The problem of disturbances compensation is discussed in Section 5.3.
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and AL–Ph (see Sections 4.4.4, P5 and Section 4.4.5). In addition, the ideal basis
functions for the object approximation are unknown a priori as well, and they are
selected from a given set of potential bases (dictionaries). In general, sparse image
approximation can be given in the synthesis or analysis form as follows:

θa = Φa · |u0|, θφ = Φφ · W−1{arg{u0}}, (analysis)
a0 = Ψa · θa, φ0 = Ψφ · θφ, (synthesis)

(5.7)

where Ψa,Ψφ and Φa, Φφ are the frame transform matrices, and the vector θa,
θφ ∈ Rm can be considered as a spectrum in a parametric data adaptive approx-
imation (m � n). Recall that W denotes the wrapping operator (see Eq. (1))
and, hence, W−1 in Eqs. (5.7) is an unwrapping operator (which can be realized
by, e.g., [44, 222]).

As it is mentioned in Chapter 3 here and in P5–P7, [149] the recovered ob-
ject argument is assumed to be in the interval [−π, π) and therefore no unwrap-
ping procedure is required; thus, the wrapping/unwrapping operators are hereafter
omitted.

Subindices a and φ in Eqs. (5.7) are shown for the amplitude and phase, re-
spectively. It is recognized that, in contrast to classical orthonormal bases (m=n),
overcomplete frames based modeling (m� n) is a much more efficient for imaging
[48, 89] and results in a better wave field reconstruction accuracy.

The sparsity of approximation is characterized by either the `0 or `1 norms. A
smaller value of the norm means a higher sparsity of approximation. Note that
results obtained by `0 or `1 norms are shown to be closed to each other [42], what
allows replacing the nonconvex `0 norm by the convex `1 norm in many variational
settings. The main intention is to find sparsest (shortest) models for phase and
amplitude with smallest values of the `0 or `1 norms. The separate sparse modeling
for the object phase and amplitude is realized via the powerful BM3D-frame filter,
specified for denoising and other imaging problems [37, 38, 117].

Taking into account the sparse modeling for the object amplitude and phase,
the wave field reconstruction is performed by minimization of the following crite-
rion [P6, Eq. (7)]

J =

K∑
r=1

1

2σ2
||or − |ur|2||22 + τa · ||θa||p + τφ · ||θφ ||p subject to (5.8)

ur = Ar · u0, r = 1, ...K, (forward propagation) (5.9)

θa = Φa · |u0|, θφ = Φφ · arg{u0}, (analysis) (5.10)

a0 = Ψa · θa, φ0 = Ψφ · θφ, (synthesis) (5.11)

where regularization terms for phase and amplitude are taken using the `p norms
(p = {0, 1}). The positive parameters τa and τϕ in Eq. (5.8) define a balance
between the fitting of the calculated |ur|2 to the given observation or, smoothness
of the wave field reconstruction and the complexity of the used model: cardinality
of spectra θa , θφ of the object amplitude and phase.
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5.2.1 Multi-objective optimization

It is shown in [38] that a multi-objective optimization can be much more efficient
than the minimization of the single criterion J from Eqs. (5.8)–(5.11) due to a
simpler implementation (filtering and inverse procedure are decoupled) and result-
ing better reconstruction quality3. Thus, instead of the constrained minimization
of (5.8)–(5.11) we arrive at the unconstrained minimization of two criterion func-
tions J1 and J2 with changing the constraints for sparse modeling by the quadratic
penalties with positive weights

J1({or},u0, {ur}, {Λt
r},v0) =

K∑
r=1

1

σ2
[
1

2
||or − |ur|2||22 + (5.12)

+
1

γr
||ur −Ar · u0||22 +

2

γr
Re{ΛH

r · (ur −Ar · u0)}+
1

γ0

||u0 − v0||22,

J2(θa,θφ,u0) = τa · ||θa||p +
1

2γa
||θa −Φa · |u0|||22 + (5.13)

+τ
φ
· ||θφ||p +

1

2γφ
||θφ −Φφ · arg{u0}||22,

where in Eq. (5.12) v0 = Ψaθa◦exp(i ·Ψφθφ) is an approximation of the complex-
valued object distribution u0.

Note that in contrast to [118] and similar to AL we involve the quadratic and
linear penalties related to the forward propagation model (ur = Ar · u0) with
the same positive parameters 1

γr
. Thus, J1 becomes the augmented Lagrangian

objective function at least with respect to this particular constraint.

The analysis and synthesis constraints in Eq. (5.10) and Eq. (5.11) are replaced
by quadratic penalties with the corresponding positive parameters 1

γa
, 1
γφ

and 1
γ0

in Eq. (5.13) and Eq. (5.12), what is a standard tools to deal with constrained
optimization [19]. Note also that the criterion J2 is separable with respect to θa
and θφ, thus it can be rewritten as J2 = J2,a + J2,φ, where

J2,a(θa, |u0|) = τa · ||θa||p +
1

2γa
||θa −Φa · |u0|||22, (5.14)

J2,φ(θφ, arg{u0}) = τ
φ
· ||θφ||p +

1

2γφ
||θφ −Φφ · arg{u0}||22.

It is recognized [38, 117] that the minimization of J1 on u0 in general results
in increasing of J2 and vice versa, optimization of J2 with respect to spectra θa
and θφ increases J1. This problem can be interpreted in terms of the game theory
as a noncooperative interaction between the players. A compromise in this selfish
behavior can be found in the fixed point (u?0,θ?a,θ?φ) of the optimization called
generalized Nash equilibrium [50, 110, 129]. Then, the complex-valued object wave

3 Note that in [38] different models, such as analysis- and synthesis-only based object recon-
structions, are considered.
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field is reconstructed using decoupling of the inverse procedure and BM3D-frame
filtering of the object amplitude and phase as [P6, cf. Eq. (10)]

θ?a = arg min
θa
J2,a(θa, |u?0|)

θ?φ = arg min
θφ
J2,φ(θφ, arg{u?0})

v?0 = Ψaθ
?
a ◦ exp(i ·Ψϕθ

?
ϕ)

u?0 = arg min
u0,{ur}

max
{Λr}

J1({or},u0, {ur}, {Λt
r},v?0)

. (5.15)

Taking into account Eq. (4.17), the problem (5.15) can be realized with the
following iterative algorithm

Repeat for t = 0, 1, 2, ...

θta = arg min
θa
J2,a(θa, |ut0|) (5.16)

θtφ = arg min
θφ
J2,φ(θφ, arg{ut0}) (5.17)

vt+1
0 = Ψaθ

t
a ◦ exp(i ·Ψφθ

t
φ) (5.18)

Repeat for r = 1, ...K

ut+1
r = arg min

ur
J1(or,u

t
0,ur,Λ

t
r,v

t+1
0 ) (5.19)

Λt+1
r = Λt

r + αr · (utr −Ar · ũt0) (5.20)

End on r

ut+1
0 = arg min

uo
J1({or},u0, {ut+1

r }, {Λt
r},vt+1

0 ) (5.21)

End on t

Depending on the chosen `0 or `1 norm in J2 the so-called hard or soft thresh-
olding, respectively, is appeared in the calculation of the spectrum for the object
amplitude θta and phase θtφ in Eqs. (5.16) and (5.17). Indeed, in Eqs. (5.14)
we consider the optimization problem with respect to θa or θφ in the following

Figure 5.2: Fragments of the reconstructed object amplitude (128×64) computed using
(a) SBMIR, RMSE=0.35, (b) AL, RMSE=0.23 and (c) D–AL, RMSE=0.026. The results
are presented for synthetic data with the true object amplitude a0[l] = 1.
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Figure 5.3: Fragments of the reconstructed object phase (128×64) computed using (a)
SBMIR, RMSE=0.58, (b) AL, RMSE=0.26 and (c) D–AL, RMSE=0.036. The results
are presented for synthetic data, PM, chessboard test-image.

general form

τ · ||θ||p +
1

2γ
||θ − b||22 → min

θ
(5.22)

for the vectors θ,b ∈ Rm. For p ≤ 1 the `p-norm is nondifferentiable, which makes
optimization on θ nontrivial. Nevertheless, for p = 0 and p = 1, there are known
analytical solutions, which can be found using convex optimization for p = 1 or
just from the analysis of the criterion function for p = 0 [48]

θ ==hτγ(b) =

{
sign(b) ·max(|b| − τγ, 0), for `1-norm

b ◦ 1(|b| ≥
√

2τγ), for `0-norm
, (5.23)

where 1(·) stands for the indicator function (Eq. (10)).
In this thesis as well as in P6–P7, [149] the object reconstruction in performed

using the soft thresholding, i.e. we use sparse modeling with respect to the `1-
norm, because it result in less oversmoothing and hence less loss of small details
of the object.

Eqs. (5.16)–(5.17) enable the spectrum estimates of the object amplitude and
phase by thresholding θta = =hτaγa(Φa · |ut0|) and θtφ = =hτφγφ(Φφ · arg{ut0}),
respectively, in the BM3D-frame domain with the corresponding thresholds τaγa
and τφγφ [P6, Eqs. (14)]. Eq. (5.18) corresponds to the synthesis of the object

approximation vt0 from the calculated spectra θta and θtφ. Together the opera-
tions (of analysis, thresholding and synthesis) in Eqs. (5.16)–(5.18) related to the
optimization of J2 can be rewritten more compact as follows

a
t+1/2
0 = BM3Da(|ut0|), (5.24)

φ
t+1/2
0 = BM3Dφ(arg{ut0}),

vt0 = a
t+1/2
0 ◦ exp(i · φt+1/2

0 ),

where BM3D(·) denotes hereafter the processing by the BM3D-frame filter, and
the corresponding subindices a and φ emphasize that the filtering is performed
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with different parameters and different transform matrices Ψa, Ψφ and Φa, Φφ

for the amplitude and phase, respectively. In our implementation the analysis
and synthesis operations, the thresholding and calculation of the frame transform
matrices Ψ and Φ are integrated in a single block of the BM3D filter.

The optimization steps for J1 in Eqs. (5.19)–(5.21) related to the calculation of
the complex-valued wave field estimates {ut+1

r } at the sensor planes, updating of
the Lagrange multipliers {Λt+1

r } and the object ut+1
0 are similar to what we have

for the AL algorithm (see Appendix A.1 and Appendix A.2 taking into account

that ∂
∂u∗0
J1 =

∑K
r=1

1
γrσ

2
r
AH
r Aru0+ 1

γ0
·u0−

∑K
r=1

1
γrσ

2
r
AH
r ·(ur+Λr)+ 1

γ0
v0 = 0).

5.2.2 Decoupled augmented Lagrangian (D–AL) algorithm

Eqs. (5.24) and solutions of Eqs. (5.19)–(5.21) result in the iterative algorithm
called Decoupled Augmented Lagrangian (D − AL) because of decoupling the in-
corporated BM3D-frame object pre-filtering in Step 1 and the inverse procedure
of the object wave field reconstruction from the noisy observations and filtered
object approximation vt0 in Step 6.

Note that the initialization here consists not only of the Lagrange multipliers
but also of a proper object estimate. Besides, the object initialization is not trivial
since a balance between the denoising and a “freedom” for the further enhancement
of the object reconstruction by filtering. It is shown [P6, Fig. 2] that lack of

10 20 30 40 50 60

0,5

0,9
1

1,1

1,5

â
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Figure 5.4: Cross-sections of the reconstructed object amplitude (top image) and object
phase (bottom image) for the results presented in Figs. 5.2 and 5.3, respectively. Thick
curve corresponds to D–AL, dashed curve – to SBMIR and dashed-dotted curve – to AL.
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Algorithm: D −AL
Input: {or}Kr=1

Initialization: u0
0, {Λ0

r}
Repeat for t = 0, 1, 2...
1. BM3D filtering:

a
t+1/2
0 = BM3Da(|ut0|),
φ
t+1/2
0 = BM3Dφ(arg{ut0})

2. Object approximation synthesis:

vt+1
0 = a

t+1/2
0 ◦ exp(i · φt+1/2

0 )
Repeat for r = 1, ...K
3. Forward propagation:

u
t+1/2
r = Ar · ut0

4. Fitting to observations:

ut+1
r [l′] = G(or[l

′],u
t+1/2
r [l′],Λt

r[l
′]) ∀l′

5. Lagrange multipliers update:

Λt+1
r = Λt

r + αr · (ut+1
r − u

t+1/2
r )

End on r
6. Object update:

ut+1
0 =

(∑K
r=1

1
γrσ

2
r
AH
r Ar + 1

γ0
· I
)−1

·
∑K
r=1

1
γrσ

2
r
AH
r · (ut+1

r + Λt
r) + 1

γ0
vt+1

0

End on t

preprocessing (too noisy initial u0
0) results in a deterioration of the convergence

rate and as a result noisy reconstruction corrupted by diffraction artifacts (“waves”
on border of the geometrical elements [P6, Fig. 3]). Excess of preprocessing leads,
in most cases, to oversmoothed reconstructions and loss of small components.

It is shown by multiple numerical simulations that the D–AL algorithm enables
an essential enhancement of the reconstruction quality for both the reconstruction
the amplitude- (see P6 for details) or phase-only objects [149] from noisy obser-
vation data. In particular, in Figs. 5.2 and 5.3 we present the comparison of the
object amplitude and phase reconstruction for PM obtained by SBMIR, AL and
D–AL. In Fig. 5.4 the corresponding cross-section of the amplitude and phase
estimates is illustrated. It is obvious that the reconstruction imaging is in favor
of D–AL. For syntactic data the reconstruction accuracy of D–AL, even without
prior information on the object modulation, is up to ten times better (in RMSE)
comparing with AL or SBMIR. Nevertheless, it is difficult to obtain good imaging
in case of experimental data, when the measurements are essentially corrupted and
such distortions can not be represented via simple i.i.d. additive Gaussian noise.

5.3 Sparse reconstruction with background com-
pensation in 4f configuration

In a real optical system the intensity observations are very different from theoret-
ical results and the observation model can not be described by Eqs. (4.1) with
the additive Gaussian (or Poissonian–Gaussian) noise. The systematic distortions
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Figure 5.5: Influence of the distortions in the coherent imaging system on the intensity
observations. Simulations of the corrupting effect: (a) noisy intensity with no distortions,
σ = 0.02 and (b) intensity observation with realistic synthetic degradations.

appear due to many factors such as non-ideality of optical system (misalignment,
misfocusing, aberrations), dust on optical elements, reflections, vibration to name
just a few. In Fig. 5.5 we present the result of a realistic distortions arising in
the optical path of a coherent imaging system4 on the imaging of the intensity
measurements at the sensor plane. Evidently the wave field reconstructions ob-
tained by phase-retrieval algorithms from such disturbed data are traditionally
noisy, blurred and corrupted. Imaging of the reconstructed objects even using
strong filtering (e.g., by BM3D-frame filter with large thresholding parameters for
the object amplitude and phase, soft or hard thresholding) is poor: see [P6, Figs.
5 and 6]. Moreover, the reconstruction from the experimental data is very sen-
sitive to disturbing factors in case of ill-posedness of the diffraction propagation
transform matrices. In particular, one of the strongest sources of disturbances in
the used 4f optical system [53] imitating the forward free space wave propagation
is the phase modulating LC-SLM (realizing different optical masks, Eq. (B.10))
because of its location in the Fourier domain.

5.3.1 Cumulative disturbance model in imaging system

Let u0(ξ, η) be a true 2D object wave field at the entrance pupil of the optical
system. Taking into consideration the non-ideality of the optical system, we in-
troduce a disturbed object wave field ũ0(ξ, η) as a product of a typically unknown
background (cumulative distortion) wave field uB(ξ, η) by the true object wave
field u0(ξ, η) as

ũ0(ξ, η) = u0(ξ, η) · uB(ξ, η), (5.25)

where the diacritic ˜ emphasizes the difference of the disturbed object ũ0 from
the ideal one u0. The phase-retrieval techniques mentioned in Chapter 4 are able
to give the reconstruction of the disturbed wave field ũ0(ξ, η) only and not able to
separate the background in order to estimate the true wave field u0(ξ, η).

4 The presented disturbances are simulated by the data obtained from the 4f optical system
presented in Fig. 5.1.



5.3. Sparse reconstruction with background compensation in 4f configuration 113

Taking into account the used vector-matrix notation and the distortions in the
real optical system (Eq. (5.25)), the forward wave field propagation model from
the object to the sensor plane can be given in the form (cf. Eq. (4.1))

ur = Ar · ũ0, r = 1, ...K, (5.26)

where
ũ0 = u0 ◦ uB (5.27)

is a complex-valued column vector, corresponding to the disturbed object discrete
2D wave field distribution, u0 is a complex-valued true object wave field. All essen-
tial nonidealities and differences of the observation obtained by real optical masks
Mr (see Eqs. (B.10)) from the ideal one (Eq. (B.9)) are considered as components
of the complex-valued background uB to be estimated and compensated.

5.3.2 SPAR–BC algorithm

In order to filter the above mention disturbances of the optical path out, we develop
two step phase-retrieval algorithm. Firstly, we perform special calibration proce-
dure: record a set of observation data {oBr } imitating the diffraction propagation
of the free space object (test-image u0[l] = 1 ∀l) by

oBr = |Ar · uB |2 + εr, r = 1, ...K, (5.28)

where ũ0 = uB , and then estimate the vector of the background ûB from these
intensity measurements. The error vector εr in Eq. (5.28) describes the additive
Gaussian zero-mean noise of a small level (e.g., sensor noise, εr[l

′] ∼ N (0, σ2
r)).

Then, we record a set of intensity measurements {or}r for the investigating object
u0 according to

or = |Ar · (u0 ◦ uB)|2 + εr, r = 1, ...K, (5.29)

and reconstruct the object û0, namely: both the object amplitude â0 and phase
φ̂0, using the computed background ûB .

At first glance, this problem looks trivial: one may find ûB and an estimate
for the disturbed object ũ0 and then recalculate the object as û0[l] = ũ0[l]/ûB [l].
However, a priori information about the object, which could be used in sparse
modeling, concerns the true object wave field u0 but not the disturbed one ũ0.
Hence, the iterative recalculation of the object estimate (ut0[l] = ũt0[l]/ûB [l], t =
0, 1, 2, ...) is required, and the structure of the resulting phase-retrieval algorithm
is therefore essentially different from the trivial guess. More details can be found
in P7.

Background reconstruction

Since no prior information on the background is given, it is straightforward to
reconstruct ûB from {oBr } as before

ûB = arg min
uB ,{ur}

max
{Λr}

JAL({oBr },uB , {ur}, {Λr}) (5.30)

by the AL algorithm. While ũ0 = uB , then ur = Ar · uB , r = 1, ...K in Eq.
(5.30), and uB is one of the arguments of the AL criterion function. This stage is
shown in the upper block of Fig. 5.6 highlighted by a dashed line.
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Figure 5.6: Two-steps phase retrieval with background compensation. The upper block
highlighted by a dashed line represents the background calibration procedure, where the
complex-valued estimate ûB is found by AL (or D–AL). The reconstruction of the (true)
object û0 using the background compensation by the SPAR–BC algorithm is under the
calibration procedure block.

Sparse modeling of the true object

Since the prior information is given for the true object, then, taking into account
the sparse modeling for the true object amplitude and phase from Section 5.2, the
wave field reconstruction is performed by minimization of the following criterion

J =

K∑
r=1

1

2σ2
||or − |ur|2||22 + τa · ||θa||p + τφ · ||θφ ||p subject to (5.31)

ur = Ar · ũ0, r = 1, ...K, (forward propagation) (5.32)

ũ0 = u0 ◦ uB , (disturbed object) (5.33)

θa = Φa · |u0|, θφ = Φφ · arg{u0}, (true object analysis) (5.34)

a0 = Ψa · θa, φ0 = Ψφ · θφ, (true object synthesis) (5.35)

where, in contrast to D–AL P6, the distortions arising due to the forward wave
propagation are involved in the forward wave field propagation model (Eq. (5.32)).
Following the multi-objective optimization, instead of the constrained optimization
the criterion J (Eqs. (5.31)–(5.35)) we arrive at the alternating minimization of
two criteria: J1 with respect to the disturbed object ũ0 = u0 ◦ uB and J2 =
J2,a + J2,φ with respect to the spectra of the true object.

J1({or}, ũ0, {ur}, {Λt
r},v0) =

K∑
r=1

1

σ2
[
1

2
||or − |ur|2||22 + (5.36)

+
1

γr
||ur −Ar · ũ0||22 +

2

γr
Re{ΛH

r · (ur −Ar · ũ0)}+
1

γ0

||ũ0 − ṽ0||22,
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where ṽ0 = v0◦uB stands for the approximation of the disturbed object. Since the
criterion function J2 is defined with respect to the true object, thus the preparatory
background compensation u0[l] = ũ0[l]/uB [l] should be performed.

J2,a(θa, |u0|) = τa · ||θa||p +
1

2γa
||θa −Φa ·

∣∣∣∣ ũ0

uB

∣∣∣∣||22, (5.37)

J2,φ(θφ, arg{u0}) = τ
φ
· ||θφ||p +

1

2γφ
||θφ −Φφ · arg

{
ũ0

uB

}
||22, (5.38)

where ũ0

uB
is the element-wise division similar to what we have in Eq. (4.5).

Using the compact form of Eqs. (5.24), we arrive at the phase-retrieval al-
gorithm with sparse modeling of the true object and the iterative background
compensation. This algorithm introduced in P7 (initially for a binary amplitude
object) is named Sparse Phase Amplitude Reconstruction with Background Com-
pensation or SPAR−BC.

Algorithm: SPAR−BC
Input: {oBr }Kr=1, {or}Kr=1

Initialization: ûB , ũ0
0, {Λ0

r}
Repeat for t = 0, 1, 2...
1. Object update (background compensation):
ut0[l] = ũt0[l]/ûB [l]
2. BM3D filtering:

a
t+1/2
0 = BM3Da(|ut0|),
φ
t+1/2
0 = BM3Dφ(arg{ut0})

3. Object approximation synthesis:

vt+1
0 = a

t+1/2
0 ◦ exp(i · φt+1/2

0 )
Repeat for r = 1, ...K
4. Forward propagation:

u
t+1/2
r = Ar · ũt0

5. Fitting to observations:

ut+1
r [l′] = G(or[l

′],u
t+1/2
r [l′],Λt

r[l
′]) ∀l′

6. Lagrange multipliers update:

Λt+1
r = Λt

r + αr · (ut+1
r − u

t+1/2
r )

End on r
7. Disturbed object update:

ũt+1
0 =

(∑K
r=1

1
γrσ

2
r
AH
r Ar + 1

γ0
· I
)−1

×
×
∑K
r=1

1
γrσ

2
r
AH
r · (ut+1

r + Λt
r) + 1

γ0
· (ûB ◦ vt+1

0 )

End on t

This second stage of the object reconstruction is illustrated in the flowchart of
SPAR–BC in Fig. 5.6 under the mentioned block for the background estimation.

The initialization concerns the calculation not only of the background estima-
tion ûB and Lagrange multipliers (e.g., Λ0

r[k] = 0), but also the initial guess for
the disturbed object ũ0

0, found, e.g., by AL or D–AL. Note that the output of
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the SPAR–BC phase-retrieval algorithm is not the estimate of the disturbed ũ0

(Step 7), but the estimate of the true object wave field u0 by the background
compensation calculated in Step 1.

5.3.3 SPAR–BC for binary amplitude object

In P7 we consider the reconstruction of a binary object with the amplitude given
in the form

a0[l] = |u0[l]| =
{
β1, for l ∈ X1,
β0, for l ∈ X0,

, (5.39)

where β0 ∈ R+ and β1 ∈ R+ stand for the lower and upper levels of the object am-
plitude signal, respectively. The set X1 defines the indices of the upper level and
the set X0 defines the indices of the lower level, X0∪X1 = {l : l = {1, 2, ...NξNη}}.
Both these levels β0, β1 and the sets X0, X1 are unknown and should be recon-
structed.

We incorporate the knowledge about the object amplitude (Eq. (5.39)) in the
criterion J2,a as an additional constraint. To deal with such a new criterion, a
special modification of the filtering procedure is developed targeted on an essential
improvement of the reconstruction of the binary object amplitude. The BM3D
filtering (Step 2 of SPAR–BC) is replaced by

a
t+1/3
0 = BM3Da(|ut0| − β

t
0) + βt0 (5.40)

a
t+1/2
0 = BM3Da(a

t+1/3
0 − βt1) + βt1

where the estimates of the lower βt0 and upper levels βt1 are calculated as medians
of at0 = |ut0| over the corresponding subsets Xt

0 = {at0 : 0 ≤ at0 ≤ ρt} and
Xt

1 = {at0 : at0 > ρt}

βt0 = medianat0∈Xt0(at0), (5.41)

βt1 = medianat0∈Xt1(at0)

For estimation of subsets Xt
0 and Xt

1, corresponding to small and large values
of at0, we use the thresholding parameter ρt calculated using the Otsu algorithm
[170]. In the procedures (5.40), successive subtractions of βt0 and βt1 makes the
image flatter first in the area of low values of binary amplitude signal and after
that in the area of its high values. Experiments show that this flattening enables
much more efficient filtering of artifacts for the estimate of a0 in case of binary
object.

For the phase filtering we make the flattening procedure simpler because for
the considered u0 the phase should be zero. The median of the object phase is
calculated only ones as ϕt0 = median(arg{ut0}) without partitioning in two subsets
as for the object amplitude. Finally, the BM3D-frame filtering and update of the
object approximation (Steps 2 and 3 in SPAR–BC) are replaced by
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Figure 5.7: Sparse object reconstruction with background compensation by SPAR–BC.
Fragments of (a) the AL amplitude estimate of the disturbed object |ũ0

0| used as the
initial guess for SPAR–BC; (b) the AL amplitude estimate of the background |uB |; (c)
the initial guess for the object amplitude |u0

0| computed by background compensation;
(d) the resulting reconstruction of the object amplitude |û0|.

a
t+1/3
0 = BM3Da(|ut0| − β

t
0) + βt0 (5.42)

a
t+1/2
0 = BM3Da(a

t+1/3
0 − βt1) + βt1

φ
t+1/2
0 = BM3Dφ(arg{ut0} −ϕt0)

vt+1
0 = a

t+1/2
0 ◦ exp(i · (φt+1/2

0 +ϕt0))

The results of the object reconstruction from experimental data by SPAR–
BC are obtained using this modified BM3D-frame filtering: in practice, Step 2 of
SPAR–BC is defined exactly by Eqs. (5.42).

In Fig 5.7 we illustrate some results obtained by the SPAR–BC algorithm
from experimental data. In Figs. 5.7(a) and 5.7(b) the initial data of this algo-
rithm are presented: the amplitude estimates of the disturbed object |ũ0

0| and the
background |uB |, respectively. The result of the background compensation, i.e.
the initial guess of the object amplitude calculated by |u0

0[l]| = |ũ0
0[l]|/|ûB [l]| is

demonstrated in Fig. 5.7(c). The resulting object amplitude computed by iterative
background compensation and BM3D-frame filtering is illustrated in Fig. 5.7(d).
Please, compare visual quality of the object amplitude reconstructions shown Fig.
5.7(c) and 5.7(d). Since we have no true complex-valued background, it is impos-
sible to obtain directly good imaging of the object. The iterative BM3D filtering
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allows to consistently wiping out the artifacts related to the inaccurate background
reconstruction. In general, the SPAR–BC reconstruction in Figs. 5.7(d) looks very
close to the original binary object.

5.4 Discussion and further work

As it is mentioned in Section 2.4, in the parallel phase retrieval we deal with non-
convex optimization problem, thus, strictly speaking, there is no guarantee of the
uniqueness of the resulting solution, and there could be some problems with the
convergence of the phase-retrieval algorithm (very low convergence rate [P6 cf.
Fig. 2], stagnation, etc.). Nevertheless the developed AL based algorithms can
be considered as heuristic greedy algorithms giving local optima (AL, AL–A, AL–
Ph) [162] or stationary, fixed points (D–AL and SPAR–BC) [38]. The accurate
derivation of the convergence of the algorithms in case of nonconvex nonsmooth
criterion function is beyond the scope of this thesis. However, our multiple nu-
merical experiments with synthetic and experimental data show that these AL
based phase-retrieval algorithms have a good convergence rate and reconstruction
quality (see more details in P4–P7), in many cases better comparing with the
state-of-the-art algorithms such as SBMIR [7, 8, 178]. The use and incorporation
of a priori information on the object to the algorithms (see AL–A, AL–Ph P5 and
SPAR–BC P7) significantly improves the reconstruction accuracy and enhances
imaging even more.

Note that the considered AL based algorithms are quite time consuming be-
cause of the large dimension of the images and use of a number of sensor planes (in
our experiments typically K=5). However, the computational performance can be
significantly improved using the advantage of the parallel processing: components
of the vectors |ut0| and |utr|, |Λt

r| (for different r) can be found independently at
each t-th iteration of our algorithms. It is shown in P6 that our implementation
of D–AL on a graphic processing unit5 (GPU) gives an essential acceleration from
two up to 10 times and more.

The algorithm parameters such as the Tikhonov regularization parameter µ,
penalty coefficients γr for the Lagrange multipliers6, penalty coefficients for the
additional constraints for the object analysis and synthesis in the BM3D domain
γa , γφ and threshold parameters τa, τφ are found in our numerical simulations
manually, by minimizing RMSE(γr, µ,K,∆z, z1, σr) for AL (see, e.g., [P4, Fig.
3]) ; or more general – by minimizing RMSE(γr, τaγa, τφγφ, γ0,K,∆z, z1, σr) for
D–AL [149] and SPAR–BC, just because these parameters are interconnected.
Indeed, for a certain propagation distance z1 and distance between the sensor
planes ∆z RMSE curve decreases starting from certain K. Larger number of
used observations means that we involve more blurred measurements. Despite a
small deviation in the numerical ranks (see Fig. 4.4), we use more and more ill-
posed transform matrices corresponding to larger zr. In addition, the choice of the
parameters also depends on the noise level in the given intensity measurements σr,
the type and size of the object (relative size of the important components of the

5 The BM3D-frame filter used in this work is realized on a central processing unit (CPU).
6 In our works P6–P7 and [149] small object details are recovered with slowly updating

Lagrange multipliers.



5.4. Discussion and further work 119

object). It is difficult to use the conventional parameter-choice methods (e.g., to
find the Tikhonov regularization parameter µ, see Section 3.7) for the multi-plane
phase-retrieval: more sophisticated tools to find proper parameters [108, 186] are
required.

Thus, in our papers P4–P7, [149] we present rather our recommendations for
the values of the algorithm parameters. In case of the use of real experimental data
we rely on the results of numerical simulations. Our further work concerns the
adaptive selection of the parameter as well as an automatic tuning of the filtering
for noisy experimental data.

5.4.1 Synthetic background in SPAR–BC: object “restora-
tion”

The discussion about the object reconstruction of a binary amplitude-only object
with background compensating is presented in Sections 5.3.2 – 5.3.3 and in our
recent paper P7. However, the presented results are obtained in case of additional
experiments for the background estimation. But, what if these is no background
estimation? In Fig. 5.8 we illustrate our numerical experiment of phase retrieval
by SPAR–BC with a synthetic background used to imitate the distortions in the
optical path. The results are shown for the same parameter setting of the imaging
system as in P7, including the size of the images and pixels’ sizes.

Figure 5.8: Numerical simulation to illustrate the influence of background compensating
on the reconstruction imaging. (a) The true binary amplitude object. (b) The ampli-
tude of a synthetic complex-valued background |uB |. (c) The amplitude estimate of the
disturbed object found by AL, RMSE=0.4. (d) The reconstructed true object amplitude
â0 obtained by SPAR–BC, RMSE=0.043.
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Figure 5.9: Amplitude reconstructions from experimental data (1024×1024 pixels, see P6
for settings parameters) by (a) SBMIR [7, 8]; (b) AL, P4; (c) D–AL, with original BM3D
filtering, τaγa=0.05 [P6, Fig. 5]; (d) D–AL, with the modified BM3D filtering, Eqs.
(5.42), τaγa=0.02. (e) The amplitude of the synthetic smooth background constructed
by inpainting of geometrical elements of the AL amplitude reconstruction. (f) The object
amplitude estimate found by SPAR–BC with the synthetic background.

In Fig. 5.8(a) the true binary amplitude object u0 = a0 is shown. The am-
plitude of the synthetic background |uB | generated based on experimental data
is depicted in Fig. 5.8(b). In order to construct the synthetic complex-valued
background we use the experimental measurement data, which result in the object
reconstruction presented in [4, Fig. 7]. Firstly, we reconstruct the disturbed object
by AL. Then, the complex-valued background uB is computed from this object
estimate with inpainting of the regions of geometrical elements (for the amplitude
and phase, separately) by Criminisi’s algorithm [30].

Here it should be mentioned that the results of the forward wave field propaga-
tion (examples of the intensity measurements) of the ideal amplitude-only object
(|Ar ·a0|2) and the disturbed complex-valued object using this synthetic complex-
valued background (|Ar · (a0 ◦ uB)|2) are given in Figs. 5.5(a) and 5.5(b), respec-
tively.

In Fig. 5.8(c) we demonstrate the AL reconstruction of the disturbed ob-
ject amplitude from corrupted and noisy intensity observations (σr = 0.02 for
all r = 1, ...5, see Fig. 5.5(b), Eq. (5.29)). In Fig. 5.8(d) we present the
reconstructed “true” object amplitude â0 from the same noisy data computed
by SPAR–BC (τaγa=0.05, τφγφ=0.3) with compensation of the synthetic back-
ground. These presented reconstructions are obtained by 100 iterations. It is
obvious that the sparse reconstruction with background compensation enables a
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Figure 5.10: The corresponding top left fragments of the images (of the size 128 × 128 )
illustrated in Fig. 5.9.

significant improvement of the reconstruction accuracy (in our numerical simula-
tions – up to in order of amplitude in RMSE) and imaging enhancement in case
of strong corruption of the given observations. The background estimate “under-
takes” strong fluctuations, which would be difficult to compensate by filtering.

However, it is much more important that the previously unsuccessful object
reconstructions can be significantly improved either by the additional calibration
procedure (if the used optical system with the same settings is available), as in
the original SPAR–BC algorithm, or by the synthetic background generated from
the reconstructed disturbed object.

In Fig. 5.9 some examples of the amplitude object reconstruction by different
phase-retrieval methods are shown. The presented results are 1024×1024 pixels
large and obtain from the experimental date of the optical system with param-
eters discussed in P6. Figures 5.9(a) – 5.9(d) illustrate the amplitude estimates
computed by SBMIR, AL, D–AL P6 and D–AL with the modified BM3D filtering
according to Eqs. (5.42), respectively. D–AL is computed with soft thresholding.
In Fig. 5.9(e) we present the amplitude of a synthetic background constructed
again by inpainting of the AL object reconstruction (separately, the amplitude and
phase) and further smoothing by the BM3D filter. In Fig. 5.9(f) we demonstrate
the reconstructed object amplitude obtained by SPAR–BC using this synthetic
background. We call such a modification of the SPAR–BC algorithm, where only
measurements for the object are required {or}, object “restoration” by analogy
with the restoration of old photos that have lost their imaging quality with time.
It can be seen that this procedure suppresses remaining noise (cf. 5.9 (d)), of
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cause, with some oversmoothing, but with no strong degradations (cf. 5.9(c)). In
Fig. 5.10 top left fragments of the mentioned images illustrated in Fig. 5.9 of the
size 128×128 pixels are presented.

The main point is the selection of geometric elements on the AL object re-
construction. It can be made manually or using the conventional Otsu algorithm
[170], while it is originated especially for binarization of gray-scale images.

5.4.2 Exploitation of parallel AL based algorithms

The resulting parallel multi-plane AL based algorithms may be used for various
application, where a good imaging of the complex-valued wave field is required:
in optical nondestructive testing, in microscopy to analyse, e.g., blood cells (a live
blood specimen) or in astronomy for, say, the James Webb space telescope. In our
works P6–P7 we present the results of the object reconstruction only by phase
retrieval. Our further work concerns also the comparison of the obtained results
with the holographic approach especially using the accurate M–DDT technique.
Also we are planning to implement the SPAR–BC algorithm for smooth amplitude
and phase objects.

In addition, it is shown in P7 that the modified BM3D filtering (Eqs. (5.42))
works as a classifier for the noisy binary object estimate. The estimate of the
amplitude levels are found using the Otsu method, but the BM3D filtering shifts
the value of the pixel at0[l] to one of these two levels βt0 or βt1 depending on the
local neighborhood. Thus, such a modification can be used as an advanced tool
for binarization of noisy and corrupted objects.



Appendix A: Derivations of
AL algorithms

Here we provide some details of optimization of the AL criteria on {ur} and u0

defining the proposed phase-retrieval algorithms.

A.1 Minimization of JAL on ur

The AL criterion (cf. Eq. (4.16))

JAL({or},u0, {ur}, {Λr}) = µ · ||u0||22 +

K∑
r=1

1

σ2
r

[
1

2
||or − |ur|2||22 + (A.1)

+
1

γr
||ur −Ar · u0||22 +

1

γr
ΛH
r (ur −Ar · u0) +

1

γr
ΛT
r (ur −Ar · u0)∗],

is additive with respect to the vectors ur and their components. Thus, the mini-
mization of JAL on ur can be produced separately for every r and l′. The minimum
condition for ur[l

′]

∂JAL
∂u∗r [l

′]
=

1

σ2
r

(|ur[l′]|2 − or[l
′]) · ur[l′] +

1

γrσ
2
r

(ur[l
′]− ςr[l′] + Λr[l

′]) = 0 (A.2)

results in

ur[l
′] =

(Ar · u0)[l′]−Λr[l
′]

γr(|ur[l′]|2 − or[l′]) + 1
=
ςr[l
′]

κr[l′]
. (A.3)

Taking the module from the left and right sides of Eq. (A.3) we arrive at the cubic
equation with respect to |ur[l′]|:

|ur[l′]|3 + |ur[l′]| ·
(

1

γr
− or[l

′]

)
− sign(κr[l

′]) · |ςr[l
′]|

γr
= 0. (A.4)

The last equation may have one or three real solutions. We are looking for a
nonnegative one for |ur[l′]|. Let us denote this solution for Eq. (A.4) as |u†r[l′]|.
If the nonnegative real-valued root of Eq. (A.4) is found, then the corresponding
complex-valued estimate of the wave field at the sensor plane ûr[l

′] is calculated
according to Eq. (A.3) as follows

ûr[l
′] =

(Ar · u0)[l′]−Λr[l
′]

γr(|u
†
r[l′]|2 − or[l′]) + 1

. (A.5)
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For brevity, we denote the nonlinear algorithm giving the nonnegative real-valued
root of Eq. (A.4) and computing Eq. (A.5) as

ûr[l
′] = G(or[l

′],ur[l
′],Λr[l

′]). (A.6)

It defines Step 2 of our AL based phase-retrieval algorithms. We refer to P4 and
[118] for more details.

A.2 Minimization of JAL on u0

In these derivative calculations, the differentiation of a scalar by a vector results
in a vector of derivatives: ∂JAL

∂u0
= [ ∂JAL∂u0[1] , ..., ∂JAL

∂u0[NξNη ] ]
T , provided that u0 =

[u0[1], ...,u0[NξNη]]T . The minimum condition ∂JAL
∂u∗0

= 0 gives the object estimate

in the form

û0 =

(
K∑
r=1

1

γrσ
2
r

AH
r Ar + µ · I

)−1

·
K∑
r=1

1

γrσ
2
r

AH
r (ur + Λr), (A.7)

what defines Step 4 of the AL algorithm.

Further we are looking for the object estimate in case of the amplitude (AM)
and phase modulations (PM) of the object. The solutions are derived from the
minimum conditions ∂JAL/∂a0 = 0 and ∂JAL/∂φ0 = 0. Note that the very first
fidelity term of Eq. (A.1) does not depend on the object, it depends neither on
a0 ∈ RNξNη nor on φ0 ∈ RNξNη . Let us rewrite Eq. (A.1) as

J̃AL(u0, {ur}, {Λr}) = (A.8)

=

K∑
r=1

1

σ2
r

[
1

γr
||ur −Ar · u0||22 +

2

γr
Re{ΛH

r (ur −Ar · u0)}] + µ · ||u0||22 =

=

K∑
r=1

1

σ2
r

[
1

γr
Ar(u0,ur) +

1

γr
Br(u0,ur,Λr)] + µ · ||u0||22

and consider the optimization of J̃AL on a0 and φ0 in parts.

A.2.1 Analytical solution: update of the object amplitude

The derivative of the scalar uTr ·A∗r ·u∗0 with respect to the vector a0 is (AH
r ur) ◦

exp(−iφ0) because

∂

∂a0[l]
(uTr ·A∗r · u∗0) =

∂

∂a0[l]

∑
l′

ur[l
′]
∑
s

A∗r [l
′, s]u∗0[s] = (A.9)

= exp(−iφ0[l]) ·
∑
l′

ur[l
′]A∗r [l

′, l] = (AH
r ur)[l] · exp(−iφ0[l]),
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where u∗0 = a0 ◦ e−iφ0 . Hence

∂

∂a0
Ar(u0,ur) = (A.10)

=
∂

∂a0
||ur −Ar · u0||22 =

∂

∂a0
[−uTr ·A∗r · u∗0 − uT0 ·AT

r · u∗r +

+uT0 ·AT
r ·A∗r · u∗0] = −[AH

r ur ◦ exp(−iφ0) + (AH
r ur ◦ exp(−iφ0))∗] +

+AH
r Aru0 ◦ exp(−iφ0) + (AH

r Aru0 ◦ exp(−iφ0))∗ =

= 2 Re{AH
r (Aru0 − ur) ◦ exp(−iφ0)}.

Analogically

∂

∂a0
Br(u0,ur,Λr) =

∂

∂a0
2 Re{ΛH

r · (ur −Ar · u0)} = (A.11)

=
∂

∂a0
[−ΛT

r ·A∗r · u∗0 −ΛH
r ·Ar · u0] = −[AH

r Λr ◦ exp(−iφ0) +

+ (AH
r Λr ◦ exp(−iφ0))∗] = −2 Re{AH

r Λr ◦ exp(−iφ0)}.

Together Eqs. (A.10)–(A.11) give the minimum condition with respect to a0 in
the form

∂

∂a0
JAL = (A.12)

=

K∑
r=1

2

γrσ
2
r

Re{AH
r (Aru0 − ur −Λr) ◦ exp(−iφ0)}+ 2µ · u0 ◦ exp(−iφ0) = 0.

In case of AM (φ0[l] = 0 ∀l), we arrive at the following analytical solution

a0 =

(
K∑
r=1

1

γrσ
2
r

Re{AH
r Ar}+ µ · I

)−1

·
K∑
r=1

1

γrσ
2
r

Re{AH
r (ut+1

r + Λt
r)}, (A.13)

what determines the update of the object amplitude in Step 4 of the AL–A algo-
rithm.

A.2.2 Analytical solution: update of the object phase

Let us consider the phase modulation of the object (PM) in the form u0 = a ·eiφ0 ,
where a is unknown constant. Taking into account that u∗0 = a · e−iφ0 , the
derivative of Ar with respect to φ0 results in

∂

∂φ0

Ar(u0,ur) = (A.14)

= i(AH
r ur ◦ u∗0)− i(AH

r ur ◦ u∗0)∗ + i(u∗0 ◦AH
r Aru0)∗ − i(u∗0 ◦AH

r Aru0) =

= 2 Im{u∗0 ◦AH
r Aru0} − 2 Im{u∗0 ◦AH

r ur} = 2 Im{u∗0 ◦AH
r (Aru0 − ur)}.

Analogically

∂

∂φ0

Br(u0,ur,Λr) =
∂

∂φ0

[−ΛT
r A∗ru

∗
0 −ΛH

r Aru0] = (A.15)

= i(AH
r Λr ◦ u∗0)− i(AH

r Λr ◦ u∗0)∗ = −2 Im{AH
r Λr ◦ u∗0}.
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Eq. (A.14) and Eq. (A.15) give the minimum condition with respect to φ0 in the
form

∂

∂φ0

JAL = 2 Im{u∗0 ◦
K∑
r=1

1

γrσ
2
r

AH
r (Aru0 − ur −Λr)} = (A.16)

= 2 Im{(a · e−iφ0) ◦
K∑
r=1

1

γrσ
2
r

AH
r (Ar(a · eiφ0)− ur −Λr)} = 0,

what determines the phase update in the gradient descent AL–Ph algorithm.
If the phase is defined, then the unknown scalar a is calculated from the con-

dition ∂
∂aJAL = 0 (cf. Eq. (A.12)) as

χ =

K∑
r=1

1

γrσ
2
r

||Ar exp(iφ0)||22 + µ ·NξNη, (A.17)

a =
1

χ

K∑
r=1

1

γrσ
2
r

Re{exp(−iφT0 ) ·AH
r (ur + Λr)}. (A.18)

It gives Step 5 and Step 7 in the gradient descent and Gauss–Newton AL–Ph
algorithms, respectively.

A.3 Approximate solution: Gauss–Newton AL–
Ph algorithm

The object phase φ0 can be also found using the iterative Gauss–Newton method
derived from the linearization

Ar(u0,ur) + Br(u0,ur,Λr) = (A.19)

= ||ur −Ar · u0||22 + 2 Re{ΛH
r · (ur −Ar · u0)} ≈

≈
(

ur −Aru0 −
∂

∂φ0

(Aru0) ·ϕ0

)H
·
(

ur −Aru0 −
∂

∂φ0

(Aru0) ·ϕ0

)
+

+2 Re{ΛH
r · (ur −Aru0 −

∂

∂φ0

(Aru0) ·ϕ0)} , Sr(a,φ0,ϕ0,ur,Λr),

where ϕ0 ∈ RNξNη is a small increment of the object phase. For PM of the form
u0 = a · eiφ0 it can be shown that the derivative of the vector Ar ·u0 with respect
to the vector φ0 is

∂

∂φ0

(Ar · u0) = iArΓ, Γ = diag(a · exp(iφ0)) (A.20)

as

∂

∂φ0[l]
(Ar · u0) =

∂

∂φ0[l]

∑
s

Ar[l
′, s](a · exp(iφ0[s])) = (A.21)

= iAr[l
′, l] · (a · exp(iφ0[l])) ∀l′
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Thus, we arrive at

Sr(a,φ0,ϕ0,ur,Λr) = (A.22)

= (ur −Ar · u0 − iArΓ ·ϕ0)H(ur −Ar · u0 − iArΓ ·ϕ0) +

+2 Re{ΛH
r · (ur −Ar · u0 − iArΓ ·ϕ0)}.

The extremal condition ∂
∂ϕ0

∑
r

1
γrσ

2
r
Sr = 0 gives us the increment ϕ0. We take

only those components of Sr which depend on ϕ0, i.e. further we use the criterion

S̃r = −uHr · iArΓ ·ϕ0 + uH0 AH
r · iArΓ ·ϕ0 + (A.23)

+iϕT0 · ΓHAH
r · ur − iϕT0 · ΓHAH

r ·Aru0 +

+ϕT0 · ΓHAH
r ·ArΓ ·ϕ0 −

−ΛH
r · iArΓ ·ϕ0 + iϕT0 · ΓHAH

r ·Λr.

In order to find ϕ0 we compute ∂
∂ϕ0

∑K
r=1

1
γrσ

2
r
S̃r and set it equal to zero.

Taking into account that [142]

∂

∂x
xTA = AT ,

∂

∂x
xTAx = xTAT + xTA (A.24)

(uHr ·Ar) · Γ = (uHr ·Ar) ◦ (a · exp(iφT0 )) = uHr Ar ◦ uT0 , (A.25)

we arrive at

K∑
r=1

2

γrσ
2
r

Re{ΓHAH
r ArΓ} ·ϕ0 + 2 Im{u∗0 ◦

K∑
r=1

1

γrσ
2
r

AH
r (Aru0 − ur −Λr)} = 0.

(A.26)
Eq. (A.26) can be rearranged to obtain the following normal equation

− ∂

∂φ0

JAL =

K∑
r=1

2

γrσ
2
r

Re{ΓTAT
r A∗rΓ

∗} ·ϕ0, (A.27)

what results in

ϕ0 = −1

2

(
K∑
r=1

1

γrσ
2
r

Re{ΓTAT
r A∗rΓ

∗}

)−1

· ∂

∂φ0

JAL = (A.28)

= −

(
K∑
r=1

1

γrσ
2
r

Re{ΓTAT
r A∗rΓ

∗}

)−1

· Im{u∗0 ◦
K∑
r=1

1

γrσ
2
r

AH
r (Aru0 − ur −Λr)}.

It determined the update of the object phase in the Gauss–Newton AL–Ph algo-
rithm. If the phase is determined, the scalar object amplitude is defined by Eqs.
(A.17)–(A.18).





Appendix B: 4f configuration
for phase retrieval

B.1 4f optical system

Let us consider the wave field propagation model in the 4f configuration with a
reflective phase modulating spatial light modulator (SLM) placed at the Fourier
plane as it is presented in Fig. 5.1. The lenses L1 and L2 with the same focal
distance f arranged in a 4f configuration provides mapping of the object wave
field to the Fourier plane and then to the sensor plane. The wave field at the
Fourier transform plane uF ( v

λf ) can be easily found as the result of convolution of

the wave field u′(ξ), ξ = (ξ1, ξ2) falling to the lens L1 with the Fresnel diffraction
kernel gf (ξ − x) of the wave field propagation to the distance f

u′(ξ) = {u0 ~ gf}(ξ) =
eikf

iλf

∞∫∫
−∞

u0(x)ei
k
2f ||ξ−x||

2

dx, (B.1)

Recall that the transverse wave field distributions u0(x), uF ( v
λf ) and ur(y) are

given in the 2D spatial coordinates x = (x1, x2), v = (v1, v2), y = (y1, y2) ∈ R2.
Since the lens transmittance [125, cf. Eq. (2.85)], [138, see Table VI.1]

T (ξ) = e−i
k
2f ||ξ||

2

, (B.2)

then the link between the wave field at the object and Fourier planes is defined as
follows

uF

(
v

λf

)
=

eikf

iλf

∞∫∫
−∞

u′(ξ)e−i
k
2f ||ξ||

2︸ ︷︷ ︸
T (ξ)

ei
k
2f ||v−ξ||

2

dξ = (B.3)

=
ei2kf

iλf

∞∫∫
−∞

u0(x)
ei

k
2f ||v||

2

iλf

∞∫∫
−∞

ei
k
2f ||ξ−x||

2

e−i
k
f 〈v,ξ〉dξdx,

where 〈v, x〉 = v1x1 + v2x2 denotes the inner product of two vectors.

Using the change of variables q = (q1, q2) = ξ − x = (ξ1 − x1, ξ2 − x2) and

129
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taking into account Eq. (1.66), we arrive at

uF

(
v

λf

)
=

ei2kf

iλf

∞∫∫
−∞

u0(x)e−i
k
f 〈v,x〉dx× (B.4)

×
∞∫∫
−∞

ei
k
2f ||q||

2

e−i
k
f 〈v,q〉dq

ei
k
2f ||v||

2

iλf

Eq.(1.66)
=

=
ei2kf

iλf

∞∫∫
−∞

u0(x)e−i
k
f 〈v,x〉dx =

ei2kf

iλf
F{u0(x)}

(
v

λf

)
.

The wave field at the sensor plane ur(y) can be found similarly

ur(y) =
ei2kf

iλf
F{uF

(
v

λf

)
· M

(
v

λf

)
}(−y), (B.5)

provided that the wave field at the Fourier plane is modulated by an optical mask
with the complex-valued transmittance M( v

λf ). If the complex transmittance of

the optical mask (SLM) M( v
λf ) = 1 ∀v, then the output of the optical system is

ur(y) = −ei4kf
∞∫∫
−∞

u0(x)

∞∫∫
−∞

e−i2π〈
v
λf ,x+y〉d

v

λf︸ ︷︷ ︸
δ(x1−(−y1))δ(x2−(−y2))

dx = −ei4kf · u0(−y), (B.6)

where the negative sign of the argument of the function shows that |ur(y)| is the
inverted copy of |u0(−y)|.

B.2 Phase modulation by LC-SLM

In the 4f configuration used for imitating the wave field propagation we use an
electronically addressed phase-only1 LC-SLM. The structure of this SLM as a 2D
array of square liquid crystal cells is illustrated in Fig. B.1 (see also [10, 11], [125,
§3.5.1] for more details). Here the lateral pixel size (pixel pitch) and its active area
are denoted by ∆1×∆2 and a1×a2, respectively. For square pixels ∆1 = ∆2 = ∆
the physical size of the LC-SLM is N1∆ × N2∆. The phase modulation of the
(n1,n2)-th pixel is defined as exp(iφn1,n2

) for n1 = 1...N1, n2 = 1...N2. In general,
the transmittance of the LC-SLM is defined as follows [10, 11, Eqs. (1)–(4)]

1 There always exists an amplitude modulation for phase-only SLMs and vice versa: a phase
modulation for an amplitude modulating DOE/SLM. The couple of the phase and amplitude
modulations in case of application of SLMs, and the linearity of the input/output response for
the phase-only SLM is out of scope of this thesis.
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M(v1, v2) = [
∑N1

n1=1

∑N2

n2=1
exp(iφn1,n2

)× (B.7)

×δ(v1 − (n1 −N1/2− 1)∆1, v2 − (n2 −N2/2− 1)∆2)×

×rect

(
v1

N1∆1

)
rect

(
v2

N2∆2

)
︸ ︷︷ ︸

aperture of the LC-SLM

] ~ [rect

(
v1

a1

)
rect

(
v2

a2

)
︸ ︷︷ ︸
area of the LC-SLM cell

],

where rect(·) is the rectangular function (Eq. (9)).
Note that φ in Eq. (B.7) is a finite size 2D matrix. It can also be consid-

ered as an infinite sparse 2D matrix with non-zeros components for n1 = 1...N1,
n2 = 1...N2 or the corresponding discrete 2D function φ(n1∆1, n2∆2) [76]. Thus,
M(v1, v2) in Eq. (B.7) can be rewritten as

M(v1, v2) = (B.8)

{[
∑∞

n1=−∞

∑∞

n2=−∞
δ(v1 − (n1 −N1/2− 1)∆, v2 − (n2 −N2/2− 1)∆2)×

× exp(iφ((n1 −N1/2− 1)∆1, (n2 −N2/2− 1)∆2))] ~

~[rect

(
v1

a1

)
rect

(
v2

a2

)
]} · rect

(
v1

N1∆1

)
rect

(
v2

N2∆2

)
.

In a discrete model with the SLM as a N1 ×N2 array of liquid crystal cells of the
pixel size ∆1 ×∆2 the sampled representation of ASD, the discrete distributions
of the optical masks (5.4) to be programmed into the SLM are

Mr[n1, n2] =

∞∫∫
−∞

Mr

(
v1

λf
,
v2

λf

)
rect

(
v1

λfN1∆1

)
× (B.9)

× rect

(
v2

λfN2∆2

)
δ(v1 − n1∆1, v2 − n2∆2)dv1dv2 =

= exp

ikzr
√

1− (|n1∆1|2 + |n2∆2|2)

f2︸ ︷︷ ︸
φn1,n2

in Eq.(B.7)

 ,

where r = 1, ...K and n1 = −N1/2...N1/2 − 1, n2 = −N2/2...N2/2 − 1 for the
central symmetry. Here and in our publications we assume, for simplicity, 100%
fill factor of the SLM cells, i.e. a1 = ∆1, a2 = ∆2. Note that the resulting
signal at the sensor plane is significantly different from what we have by the free-
space propagation model, namely: taking into account that F{rect( v

λf∆ )}(x) =∫
rect( v

λf∆ )e−i
2πv
λf xdv = sinc(x∆) · λf∆, Eq. (5.2) can be rewritten as

ur(x, y) = −ei4kf {u0(−x,−y) ~ [(λf)2 sinc(−x∆1) sinc(−y∆2)× (B.10)

×∆1∆2 · F
{∑N1/2−1

n1=−N1/2

∑N2/2−1

n2=−N2/2
Mr[n1, n2] · rect

(
v1

λfN1∆1

)
×

× rect

(
v2

λfN2∆2

)
δ

(
v1

λf
− n1∆1,

v2

λf
− n2∆2

)}
(−x,−y)]}, r = 1, ...K.
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Figure B.1: Structure of the pixelated phase-only LC-SLM as a 2D array of square liquid
crystal cells. Following [10, Fig. 1], ∆ and a denote the lateral size of the pixel (pixel
pitch) and its active area, respectively. Here these sizes are presented to be the same
with respect to the x- and y-direction [125, cf. Fig. 3.41].

The flexibility of the optical model with an SLM is the ability to use (in prin-
ciple) completely arbitrary values in Mr[n1, n2] provided the invertibility of the
resulting transfer functions. Moreover, the reprogramming of the SLM (tens of
milliseconds) is much faster then the change of the optical setup (replacement of
a sensor).

In the wave field propagation models for phase retrieval we use ASD (Eq.
(B.9)), F–DDT or M–DDT (P3–P7), and do not consider complex diffraction
kernels describing the real transfer functions of LC-SLMs (Eq. (B.10)). Instead of
this, all changes from the theoretically predicted results of the wave field propaga-
tion and nonidealities related to, e.g., the bandlimitedness of the transfer function
or various distortions in the optical path of the used coherent imaging system
(Fig. 5.1) are considered as a cumulative disturbance of the object wave field, a
“background” to be estimated and compensated (see Section 5.3, P7).
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[169] W. Osten, T. Baumbach, and W. Jüptner, “Comparative digital holography,”Optics
Lett. 27, 1764–1766 (2002).

[170] N. Otsu. “A threshold selection method from gray-level histograms,” IEEE Trans-
actions of Systems, Man and Cybernetics 9, 62–66 (1979).

[171] D. Paganin, A. Barty, P. J. McMahon, and K. Nugent, “Quantitative phase-
amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51–61 (2004).

[172] D. G. Papazoglou, M. Loulakis, G. Siganakis and N. A. Vainos, “Holographic read
- write projector of video images,” Opt. Express 10, 280–285 (2002).

[173] D. A. Park, The fire within the eye: a historical essay on the nature and meaning
of light, (Princeton University Press, 1997).



REFERENCES 141

[174] R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and
aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992).

[175] G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital
holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035–1041
(2001).

[176] G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless
holographic imaging system,” Appl Opt. 41, 4489–4496 (2002).

[177] G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holography combined with
laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38,
117–129 (2002).

[178] G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence
of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).

[179] S. Perkowitz, Empire of light: a history of discovery in science and art, (Joseph
Henry Press, 1996).

[180] R. Piche, “Regularization operators for multidimentional inverse problems with
Kronecker product structure,” ECCOMAS2004, (2004), available online .

[181] B. C. Platt and R. V. Shack, “History and principles of Shack-Hartmann wavefront
sensing,” J. Refract Surg. 17, S573–S577 (2001), available online .

[182] Pliny the Elder, The Natural History (eds. J. Bostock, M.D., F.R.S., H. T. Riley,
Esq., B.A., London. Taylor and Francis, Red Lion Court, Fleet Street, 1855), Book
XXXVII, Chap. 16.

[183] B. T. Polyak, Introduction to optimization, (Nauka, 1983), in Russian; B. T. Polyak,
Introduction to optimization, (Optimization Software, 1987).

[184] N. Ponomarenko, V. Lukin, M. Zriakhov, and A. Kaarna, “Improved grouping and
noise cancellation for automatic lossy compression of AVIRIS images,” in J. Blanc-
Talon, D. Bone, W. Philips, D. Popescu, and P. Scheunders, ed., Advanced concepts
for intelligent vision systems, (Springer, 2010), 261–271.

[185] M. J. D. Powell, “A method for nonlinear constraints in minimization problems,”
in R. Fletcher, ed., Optimization, (Academic Press, 1969), 283–298.

[186] G. V. Rocha and B. Yu, “Greedy and relaxed approximations to model selection:
a simulation study,” in P. Grunwald, P. Myllymaki, I. Tabus, M. Weinberger and
B. Yu eds., Festschrift in honor of Jorma Rissannen on the occasion of his 75th
birthday, (TICSP Report # 38, 2008), 63–80.

[187] P. Rodrigo, R. Eriksen, V. Daria, and J. Glückstad, “Shack-Hartmann multiple-
beam optical tweezers,” Opt. Express 11, 208–214 (2003).

[188] V. Ronchi, The nature of light: an historical study, (Heinemann, 1970).

[189] W. Rudin, Principles of mathematical analysis, 3rd. ed., (McGraw-Hill, 1976).

[190] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (2nd ed., John Wiley
and Sons, Inc., 2007).

[191] O. Scherzer, “The use of Morozov’s discrepancy principle for Tikhonov regulariza-
tion for solving nonlinear ill-posed problems,” Computing 51, 45–60 (1993).
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