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Abstract 

An application area of digital holography continuously extends: three-dimensional 
imaging, laser projections, material processing, deformation detection, microscopy, etc. A 
wavefield reconstruction from intensity and/or phase measurements is one of the basic 
problems in digital holography methods [1]. We consider reconstruction of a wavefield 
distribution in an object plane from data in a diffraction (sensor) plane. In this paper we 
discuss and study a novel two-matrix digital model for the forward wavefield propagation 
originated in [2]. This model is aliasing free and precise for pixel-wise invariant object and 
sensor plane distributions. Following [2-3] we use this model for formalization of the object 
wavefield reconstruction (backward propagation) as an inverse problem. Depending on the 
parameters of the optical setup this problem can be very ill-conditioned. Main results of this 
paper concern the study of the conditioning of the problem and its link with the accuracy of 
the wavefield reconstruction. We select a regularizing parameter using the condition number 
of the transfer matrices of the proposed model. Simulation experiments demonstrate a very 
good performance of the developed wavefield reconstruction technique in comparison with 
the conventional convolutional and discrete Fresnel transform algorithms. 
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1. Introduction 

In a typical holography setup there are two different planes: input (object) and output 
(sensor) ones (Fig. 1). The object plane is a source of light radiation or reflection (according 
to the type of an object: diffusely passing or reflecting one) propagating along the optical axis 
and the output plane (with an imaging CMOS sensor) which is parallel to the object plane 
with a distance d between the planes.  

 
Fig.1. Principal setup of wavefield propagation and reconstruction 

 
This paper concerns a digital modeling for both forward and backward wavefield 

propagations. For the forward propagation we use a novel algebraic approach based on the 
matrix transform of the wavefield distributions proposed in [2]. It is assumed that an object 
distribution is pixel-wise invariant, and then there is an accurate discrete-to-discrete model 



linking discrete values of the wavefield distributions averaged over pixels in the object and 
sensor planes. This modeling is aliasing free and accurate for pixel-wise invariant object and 
sensor distributions. The reconstruction of the object distribution from a distribution given in 
the sensor plane is formulated as an inverse problem [2]. Depending on the pixel size and the 
distance between the object and sensor planes the matrices of the introduced Matrix Discrete 
Diffraction Transform (M-DDT) can become very ill-conditioned what makes the 
reconstruction of the object distribution difficult or even impossible. The possibility of a 
perfect/good quality reconstruction is well characterized by the rank and conditioning number 
of the transform matrices. The forward matrix transform modeling is a natural and very 
productive tool to study limitations of the wavefield reconstruction and to develop novel 
effective algorithms. In this paper we introduce a regularized inverse reconstruction algorithm 
based on the M-DDT, study the conditioning of the inverse problem depending on the 
parameters of the optical setup and connect this conditioning number with the accuracy of the 
wavefield reconstruction. 

 
2. Modeling of wavefield propagation 

Let us define a 2D complex-valued wavefield ),( yxuo  in the object plane (x,y,0) as a 
function of the lateral coordinates x and y. According to the scalar diffraction theory [4] there 
is a linear operator which allows calculating a wavefield distribution ),( yxuz  in the sensor 
plane as }{),( odd uyxu D= , where dD  stands for a diffraction operator zD  with a distance 
parameter z=d : 
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where 2),( Ryx ∈ , the kernel ),( yxgz  is shift invariant and has a form of the first Raylegh-
Sommerfeld solution of the Maxwell-Helmholtz equation. Here k=2π/λ is a wavenumber and 
λ is a wavelength. If the distance d is much larger than the wavelength than the kernel in (1) is 
of the form:   
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If z>>x,y the Fresnel approximation of this kernel can be represented as 
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It is proved that the operator zD  is invertible, and this inverse operator also can be 
presented as a convolution with a shift-invariant kernel. If the diffraction wavefield ),( yxuz  
is given the wavefield in the object plane z=0 can be reconstructed using the inverse operator 

1−
zD : 
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In contrast to standard techniques, which consider discrete models as approximations for 
the forward and backward wavefield propagation integrals, we follow a different idea. We 
start from an accurate forward propagation discrete modeling which is precise for a class of 
pixel-wise invariant distributions and then reconstruct the object distribution by inverting this 
precise forward model. The main point is that for the wavefield reconstruction we do not use 
the backward propagation integral (4), which is valid for the infinite sensor only. A derivation 
and theory of the DDT in frequency and space domains can be found in [2-3]. 

 



3. M-DDT representation 
Let images and pixels in the object and sensor planes are rectangular and have the 

following sizes: 0,0, xy NN × , 0,0, xy ∆×∆  and zxzy NN ,, × , zxzy ,, ∆×∆ , respectively. Then, the 
space domain DDT can be introduced as follows [2]: 
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where the kernel za , in general, can be shift-varying: 
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For the Fresnel approximation of zg  the kernel za  allows the following factorization: 
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where the transfer matrices Ay and Ax are calculated according to the formulas:  
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Inserting (7) into (5) we arrive to the “Matrix Digital Diffraction Transform” (M-DDT) 
model for the forward wavefield propagation presented in the form: 

T
xoyz AuAu ⋅⋅⋅= µ ,       (10) 

where ),( yxou  and ),( yxzu  are the complex-valued matrices of wavefield distributions in 
the object and image planes.  

 
4. Backward (inverse) modeling 

In order to solve (10) with respect to ),( yxou  the standard Tikhonov regularization 
technique is used.  We are looking for a regularized estimate of ou defined as a minimizer of 
the quadratic criterion: 
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 Here 2|||| F⋅  is the quadratic Frobenius matrix norm, and 0≥α  controls the level of 
regularization or smoothness of oû . Minimization of (11) gives the solution in the form:  
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T
xx and ( H⋅ ) stands for the Hermitian 

conjugate. It has been checked numerically that the second and the third components in the 
right-hand side of this equation are not essential and can be dropped. In this case the 
approximate regularized inverse solution can be represented as 
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5. Numerical experiments and their analysis 

It is assumed that images in object and sensor planes are squared and can be of a different 
size: 00,0, NNN xy ==  and 0,, qNNNN zzxzy === , where the parameter 1≥q  shows a ratio of 
the image sizes in the sensor and object planes. The following values of the parameters are 



assumed in our experiments: 8.632=λ nm, 4.70 =∆=∆ z µm, 5120 =N  pixels. The root 
mean square error (RMSE) is used as an accuracy criterion. Following [2], we introduce “in-
focus” distance defined by the formula λλ //| 000 ∆⋅∆⋅⋅=∆⋅∆⋅= zzzqf NqNd , as a distance 
when the perfect reconstruction of oû  is possible for the sensor size 0qNNz = . This distance 
is originated from the Fresnel diffraction transform defining the conditions when FFT is 
applicable for calculations.  

The “Lena” test-image is used in our experiments for amplitude modulation of the object 
wavefield distribution. It is assumed that the wavefield in the object plane is complex-valued 
with an invariant phase and amplitude equal to the intensity of the “Lena” test-image. The 
complex-valued observations in the sensor plane are used for reconstruction of this amplitude 
distribution. We compare the following algorithms: the M-DDT defined by the formula (13), 
the frequency domain DDT (F-DDT) [3], the convolutional inverse using the transfer function 
with original (conv1) and double (conv2) image sizes as it is defined in [2], and the inverse 
discrete Fresnel transform (IDFrT).  

Depending on parameters the matrices y
H
y AA and T

xxAA* can be extremely ill-conditioned, 
then the regularization parameterα  in the matrices xB  and yB is of importance. We select the 
regularization parameter recursively starting from very small values α  up to the moment 
when the conditioning number becomes smaller then the critical value equal to 610 .  

  

 
Fig.2. Original image (a) and image reconstructions by: (b) M-DDT, RMSE=0.027, (c) F-DDT , RMSE=0.029, 

(d) IDFrT, RMSE=0.064. 
 
Visual and numerical comparisons of the algorithms are presented in Fig. 2 for the equal 

sizes of the object and sensor images (q=1) and for the distance 1|3 =⋅= qfdz . A numerical 
accuracy comparison of all considered algorithms as a function of the distance d (for q=1) is 
produced in Fig. 3. The advantage of the M-DDT over the conventional algorithms is 
obvious. 

 

 
Fig.3. The accuracy of the image restoration (RMSE) versus the distance d for different algorithms 

 



A larger sensor size (q>1) results in a better accuracy for the M-DDT reconstruction. In 
Fig. 4 we show how the accuracy of this reconstruction depends on the parameter q (Fig. 4b) 
and link this accuracy with the conditioning (cond) of the matrices y

H
y AA  or T

xxAA*  (Fig. 4a). 
In our case, for the matrices yA and xA , which have the same size, the condition numbers 
have the equal value. This value is small for all sensor sizes, q={1,2,4}, if the distance d is 
smaller or equal to the corresponding “in-focus”  distance qfd | , i.e. qfdd |≤ . For these 
“smaller” distances we obtain a high-accuracy (nearly perfect) reconstruction (see Fig. 4b). 
As soon as  qfdd |>  the condition number grows rapidly and the accuracy of reconstruction 
is correspondingly going down. A similarity in behavior of the curves in Fig. 4a and Fig. 4b 
confirms that a study of the conditioning number gives a clear indication of the accuracy of 
reconstruction and can be used for optimization of optical setups and sensors.  

      
Fig.4. (a) Condition numbers cond (in log scale) and (b) RMSE versus the distance d for q={1, 2, 4}.  

 
6. Conclusion 

This paper concerns a novel two-matrix digital model for forward wavefield propagation. 
The condition number of the matrices can be used as indication of a potential accuracy which 
could be achieved for object wavefield reconstruction. Simulation experiments show the 
significant numerical and visual advantage of the M-DDT algorithm versus the standard 
convolutional and discrete Fresnel transform algorithms. The recursive F-DDT reconstruction 
demonstrates the accuracy close to given by the M-DDT algorithm. 
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