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Generally, wave field reconstructions obtained by phase-retrieval algorithms are noisy, blurred, and
corrupted by various artifacts such as irregular waves, spots, etc. These distortions, arising due to many
factors, such as nonidealities of the optical system (misalignment, focusing errors), dust on optical
elements, reflections, and vibration, are hard to localize and specify. It is assumed that there is a cumu-
lative disturbance called “background,” which describes mentioned distortions in the coherent imaging
system manifested at the sensor plane. Here we propose a novel iterative phase-retrieval algorithm
compensating for these distortions in the optical system. An estimate of this background is obtained
via special calibration experiments, and then it is used for the object reconstruction. The algorithm
is based on the maximum likelihood approach targeting on the optimal object reconstruction from noisy
data and imaging enhancement using a priori information on the object amplitude. In this work we
demonstrate the compensation of the distortions of the optical trace for a complex-valued object with
a binary amplitude. The developed algorithm results in state-of-the-art filtering, and sharp reconstruc-
tion imaging of the object amplitude can be achieved. © 2012 Optical Society of America
OCIS codes: 030.4280, 050.1960, 070.2025, 100.3010, 100.3190, 100.5070.

1. Introduction

The conventional sensors detect only the intensity of
the light. The phase of the light wave field contains,
however, important information on the object, which
is useful in, e.g., microscopy, astronomy, andmaterial
analysis. Since the phase cannot be recorded
directly and it is systematically lost in the physical
measurements, computational phase-recovering
techniques are required for imaging and data proces-
sing. Phase recovering and, in general, the recon-
struction of the object amplitude and phase is
referred to as the phase-retrieval problem.

Perhaps the first iterative method for phase retrie-
val from intensitymeasurementswas thewell-known
Gerchberg–Saxton algorithm [1], initially employed
for a single observation plane, and its variation
devised by Misell [2] for two defocusing images at
different measurement planes. The idea consisting
in the iterative replacement of the estimated magni-
tude by measured and prior information was further
developed for various applications by many authors
(e.g., [3–6]). Similarmethods are proposed for Fresnel
instead of Fourier transforms as the transfer
functions of the wave field propagation [7–9]. Various
phase-retrieval algorithms based on these landmark
works are systematized by Fienup [10], who intro-
duced classical types of iterative phase-retrieval algo-
rithms. Multiple measurements gain an observation

1559-128X/13/01A269-12$15.00/0
© 2013 Optical Society of America

1 January 2013 / Vol. 52, No. 1 / APPLIED OPTICS A269



redundancy that can be exploited in order to improve
the quality of the complex-valued object reconstruc-
tion [11–13].

The above-mentioned imaging techniques are
mainly based on an ideal wave field propagation
modeling derived from the scalar diffraction theory
[14]. In practice, wave fields in real coherent imaging
systems and their observations are quite different
from those predicted by theory; hence wave field
reconstructions obtained by simulations (i.e., theore-
tical results) and using real experimental data can
dramatically vary. The reconstructions obtained
from the real data differ from simulated ones by
multiple well-seen artifacts in the form of irregular
waves, spots, random noise, etc. These systematic
distortions appear due to many factors such as
nonidealities of the optical system (misalignment,
focusing errors, aberrations), dust on optical
elements, reflections, vibration, etc.

In this paper, we consider a 4f optical system with
a spatial light modulator (SLM) located across
the Fourier domain of the first lens. This system, imi-
tating the lensless optical setup for the free-space
diffraction propagation [15], is used for capturing
multiple intensity observations at the sensor plane
for the phase reconstruction (see Fig. 1). The recon-
struction from these data varies from the theoretical
prediction due to the different propagation operator
of the used optical mask realized by a phase-
modulating SLM. Moreover, the used SLM is one
of the strongest sources of disturbances of the optical
system due to its location at the Fourier plane.

In general, there is a diversity of numerical
approaches, which are used for calibration [16],
filtering parasitic reflections [17], compensating for
curvature introduced bymicroscope objective [18,19],
aberrations [20], or astigmatism [21]. In this work we
assume that there is a generalized function at the
object plane that describes various distortions in
the coherent imaging system, manifested at the
sensor plane, and errors of the numerical model.
Namely, we do not try to identify particular sources

of the disturbances but estimate and compensate for
their accumulated effects by recalculating them to
the entrance pupil of the used 4f configuration. In
the following, the cumulative distortions are referred
to as “background” distortions. Thus, we are develop-
ing an iterative phase-retrieval algorithm, where,
first, we estimate this background disturbance using
special calibration experiments and then use it to
reconstruct the object amplitude and phase. In this
work we apply the variational constrained maximum
likelihood formulation with parallel processing of
multiple intensity observations proposed in our
previous works [22–24].

In this work we demonstrate the performance
and imaging enhancement of the proposed phase-
retrieval algorithm with the background compensa-
tion for a complex-valued object with a binary
amplitude. We incorporate prior information on the
structure of the true object wave field, and recon-
struct both unknown lower and upper levels of the
binary amplitude and find indices of these levels.

Let u0�x�, x ∈ R2 be a true complex-valued object
at the entrance pupil of the optical system. Modeling
the nonideality of the optical system, we introduce a
“disturbed” object ~u0�x� as a product of a typically un-
known background (cumulative complex-valued dis-
turbance) uB�x� by the true object u0�x� as

~u0�x� � u0�x� · uB�x�; (1)

where the diacritic ∼ emphasizes the difference of the
disturbed ~u0 from the true/ideal one u0. The standard
phase-retrieval techniques are able to give the recon-
struction of ~u0�x� only and they are not able to sepa-
rate the background in order to estimate the true
u0�x�. In order to reconstruct this background and
extract the true object u0 in our work, we perform
an additional calibration procedure.

At first glance, this problem looks trivial: one may
produce the experiments with a known invariant
u0�x�, for instance u0�x� � 1, obtain the estimate
ûB�x� and then recalculate the estimate for the true
object as û0�x� � ~u0�x�∕ûB�x�. However, a priori infor-
mation about the object (its binary amplitude) in the
used sparse modeling concerns the true object wave
field u0 but not the disturbed one ~u0. Thus, we are
processing the recalculated object estimate at each
iteration (ût

0�x� � ~ut
0�x�∕ûB�x�, t � 0; 1; 2;…), and

the structure of the developed iterative phase-
retrieval algorithm is therefore essentially different
from the trivial guess.

The paper is organized as follows. In Section 2, the
image formation in a 4f optical system, the model of
the object to be reconstructed, and the observation
model are presented. The constrained variational
approach for the phase retrieval and the sparse
modeling for the object phase and amplitude are
introduced in Section 3. The proposed phase-
retrieval algorithm with the background compensa-
tion especially for a binary amplitude object is
presented in Section 4. Numerical experiments for

Fig. 1. Experimental setup of the 4f optical system used for re-
cording measurement data [15]. Lenses L1 and L2 in the 4f con-
figuration provide an accurate mapping of the object wave field to
the parallel observation (sensor) plane. An optical mask with the
complex-valued transmittance Mr located at the Fourier plane
(a phase-modulating SLM) enables linear filter operations.
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the object wave field reconstructions from real data
are shown and discussed in detail in Section 5.

2. Observation Model

The straightforward experimental optical setup for
the free-space diffraction propagation to different
distances fzrg can be realized by a moveable CCD
sensor (see [13, Fig. 1] or [24, Fig. 1]). In such an
arrangement, a digital camera is sequentially moved
between K measurement planes (separated by a
distance Δz) using a motorized precision stage
[12,13]. Despite the simplicity of the mathematical
model of the free-space propagation, in practice such
an optical system is bulky and expensive due to the
use of a motorized sensor, and the recording process
of intensity measurements is relatively slow. It is
shown in [15,25] that a 4f configuration can be used
to imitate the lensless optical system for the multi-
plane phase-retrieval scenario.

Let us consider the image-formation model in a
conventional 4f configuration of the coherent ima-
ging system linking complex amplitudes at the object
andmeasurement planes. The used 4f optical system
is illustrated in Fig. 1. Let us denote complex ampli-
tudes at the object and measurement (sensor) planes
by u0�x� and ur�y�, respectively. The lenses L1 and L2
with the focal length f arranged in the 4f configura-
tion provide an accurate mapping of the object wave
field into the parallel measurement plane. A reflec-
tive phase-modulating SLM is placed at the Fourier
plane of the first lens [15]. The forward wave field
propagation is realized by the modulation of the
Fourier transform of the object wave field using this
reprogrammable SLM. The principal feature of this
setup is that the sensor plane is immobile and fixed
at the distance 4f from the object plane.

Let us assume for a moment that there are no dis-
tortions in the optical track. It is well known that the
link between the wave fields at the object u0�x� and
the Fourier planes uF�v∕λf � is given as follows [14]:

uF

�
v
λf

�
� 1

iλf
Ffu0�x�g

�
v
λf

�
; (2)

where F f·g stands for the two-dimensional (2D) inte-
gral Fourier transform, and λ is a wavelength. If the
optical mask (SLM) placed at the Fourier plane has
the complex-valued transmittance Mr�v∕λf �, then
the output of the optical system is defined as

ur�y� �
1
iλf

F
�
uF

�
v
λf

�
·Mr

�
v
λf

��
�−y�: (3)

All these wave field distributions are given in the
2D lateral coordinates: here we use the variables x, y,
v ∈ R2 for the object, sensor, and Fourier planes,
respectively.

A. Discrete Modeling

For discrete modeling, the continuous arguments are
changed by the digital ones with a corresponding
replacement of the continuous functions by their dis-
crete counterparts: u0�x� → u0�k1Δx1 ; k2Δx2�, ur�y� →
ur�l1Δy1 ; l2Δy2�, uF�v∕λf �→uF��Δv1∕λf �η1;�Δv2∕λf �η2�
with 2D integer arguments k � �k1; k2�, l � �l1; l2�
and η � �η1; η2�. This discretization is dictated by
the use of a digital camera and a pixelated SLM
as a 2D array of liquid-crystal cells. We hereafter con-
sider the discrete wave fields at the object u0�k1; k2�,
Fourier uF �η1; η2�, and sensor ur�l1; l2� planes.

We use a vector-matrix notation for complex-
valued distributions of the wave fields. 2D discrete
distributions (matrices) are vectorized to the complex-
valued column vector [26]. Bold lowercase characters
are used for the vectors. Matrices are defined by bold
uppercase to distinguish them from vectors. Thus,
u0�k�, uF �η� and ur�l� are column vectors constructed
by vectorization of the corresponding 2D discrete
wave field distributions at the object U0�k1; k2�, Four-
ier UF �η1; η2�, and sensor Ur�l1; l2� planes, respectively.

In general, these 2D discrete wave field distribu-
tions (images) U0�k1; k2�, UF �η1; η2�, and Ur�l1; l2� can
have various pixel sizes Δx1 ×Δx1 , Δv1 ×Δv1 , and
Δy1 ×Δy1 , respectively. In this work we assume that
the pixel size at the object and sensor planes is the
same: Δx1 � Δy1 , Δx2 � Δy2 . Moreover these images
can be rectangular of different size Nx1 ×Nx1 ,
Nv1 ×Nv2 , and Ny1 ×Ny1 , respectively. Here they
are assumed to be of the same size Nx ×Ny for all
planes.

Let us also assume that the following standard
conditions are fulfilled [23,27]:

Δv1Δx1Nx � λf ; Δv2Δx2Ny � λf : (4)

Then, discretization of Eq. (3) has the form

Ur�l1; l2� � −
1

NxNy
FfFfU0g∘Mrg�−l1;−l2�; (5)

where Ff·g denotes the 2D discrete Fourier trans-
form, ∘ stands for the Hadamard (elementwise)
product, andMr�η1; η2� is the discretized optical mask
at the Fourier plane. Note that the fast Fourier trans-
form enables much faster computation of this
wave field propagation (see [23,24]).

Taking into account the distortions in the real
optical system, the forward wave field propagation
from the object to the sensor plane is represented
in the form

ur � Ar · ~u0; r � 1;…K; (6)

where according to Eq. (1), ~u0 � u0 ∘ uB is a complex-
valued vector, corresponding to the disturbed object
discrete 2D wave field distribution, and uB ∈ Cn×1 is
the vector of cumulative disturbances of the optical
track (background) recalculated with respect to the
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object plane. Ar ∈ Cn×n is a forward propagation op-
erator corresponding to the optical mask Mr at the
Fourier plane, n � Nx ·Ny, and K is a number of
these various optical masks.

In general, these could be arbitrary fMrg. Following
[15], the effect of the object diffraction propagation to
various distances zr is, however, obtained using the
SLM, where the corresponding programmed optical
masks Mr are

Mr�η1; η2� � exp

0
@i 2π

λ
zr

���������������������������������������������������
1 −Δ2

v1

jη1j2
f 2

−Δ2
v2

jη2j2
f 2

s 1
A:
(7)

B. Object Model

In this work we consider the binary amplitude of the
object u0 defined as follows:

a0�k� � abs�u0�k�� �
�
β1; for k ∈ X1 ⊂ X;
β0; for k ∈ X0 ⊂ X;

(8)

where X is a support of the image. β0 ∈ R� and β1 ∈

R� stand for the nonnegative real-valued lower and
upper levels of the object amplitude, respectively.
The set X1 defines the indices of the upper level,
and the setX0 � X∖X1 defines the indices of the low-
er level. Both the levels β0, β1 and the sets X0, X1 are
unknown and should be reconstructed. In our experi-
ments we use the U.S. Air Force resolution test chart,
which has a binary amplitude. The laser beam pas-
sing through the transparent text chart undergoes
some phase transformations that reflect in the phase
object properties. Thus, we reconstruct the complex-
valued object: the binary amplitude [according to
Eq. (8)] and an unknown phase φ0 � angle�u0�.
C. Noisy Intensity Observations

Assume that we have a set of K experiments pro-
duced with different masks fMrgr, r � 1;…; K . The
problem is to reconstruct the complex-valued object
wave field u0 from multiple noisy intensity observa-
tions forg measured at the sensor plane. These mea-
surements are represented in the vector-matrix
notation as follows:

or�l� � jur�l�j2 � εr�l�; r � 1;…K; (9)

where the noise is assumed to be zero-mean
Gaussian with the variance σ2r , εr�l� ∼N �0; σ2r �, inde-
pendent for different l and r. The observation vectors
forg correspond to the 2D intensity distributions on
the regular discrete grid of the sensor located at
the sensor plane.

3. Sparse Object Modeling and Variational
Formulation

It is assumed in a sparse modeling approach that the
true object distribution u0 can be approximated by a

small number of nonzero elements of basis functions.
The ideal basis functions for the object approxima-
tion are unknown a priori and selected from a given
set of potential bases (dictionaries).

A. Sparse Modeling of Complex-Valued Object

Since we deal with a complex-valued object wave
field of the form u0 � a0 ∘ exp�i · φ0�, the sparse ap-
proximations are performed separately for both the
object phase φ0 � angle�u0� ∈ Rn and amplitude
a0 � abs�u0� ∈ Rn [22–24]. Sparse object approxima-
tion can be given in the analysis or synthesis form as
follows:

θa � Φa · a0; θφ � Φφ · φ0 �analysis�; (10)

a0 � Ψa · θa; φ0 � Ψφ · θφ �synthesis�: (11)

Here Ψa, Ψφ and Φa, Φφ are the frame transform
matrices, which contain the values of the basis func-
tions for the synthesis and analysis of the object
amplitude and phase. The vector θa, θφ ∈ Rm can
be considered as a spectrum (m ≫ n) in a parametric
data adaptive approximation. Subindices a and φ are
shown for the amplitude and phase, respectively. In
particular, it can be said that the phase φ0 and
amplitude a0 are approximated by small numbers
of nonzero components of θφ in the basis Ψφ and θa
in the basis Ψa, respectively.

The sparsity of approximation is characterized by
either the ℓ0 norm ‖θ‖0 defined as a number of
nonzero components of the vector θ or the ℓ1 norm
as a sum of absolute values of components of the vec-
tor ‖θ‖1 �P

sjθsj. A smaller value of the normmeans
a higher sparsity of approximation. The main inten-
tion is to find sparsest (shortest) models for phase
and amplitude with the smallest values of the ℓ0
or ℓ1 norms [28,29].

Note that results obtained by ℓ0 or ℓ1 norms are
shown to be close to each other [30]. For simplicity we
use the convex ℓ1 norm in our modeling. The separate
sparse modeling for the object phase and amplitude
is realized via the powerful block-matching three-
dimensional (BM3D)-frame filter, specified for
denoising and other imaging problems. We refer to
[31–33] for details about the used basis functions,
the structure of the frame transform matrices, and
the BM3D filter.

B. Multiobjective Optimization

In our previous works [22–24] the phase-retrieval
algorithms are derived from the multiobjective opti-
mization. It is shown in [33] that such an approach
is much more efficient and convenient than the opti-
mization of a single constrained criterion, which spe-
cifies a number of different subjects/conditions (e.g.,
the forward diffraction propagation model and the
object sparse approximation). We decouple the
inverse reconstruction of the disturbed object and
filtering of the object amplitude and phase. This
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results in simpler implementation. Assume that the
background wave field uB is given. Taking into
accountEq. (1) and using the separate sparse regular-
ization of the object amplitude and phase, the true
object is found by the alternating minimization of
two criterion functions: J 1 with respect to the dis-
turbed object and J 2 � J 2;a � J 2;φ regarding to the
spectra of the true object. The criterion J 1 is given
in the form

J 1�forg; ~u0; furg; fΛrg; ~v0�

�
XK
r�1

1

σ2r

�
1
2
‖or − jurj2‖2

2 �
1
γr
‖ur − Ar · ~u0‖2

2

� 2
γr

RefΛH
r · �ur − Ar · ~u0�g

�
� 1

γ0
‖ ~u0 − ~v0‖2

2: (12)

The first summand in J 1 is the quadratic fidelity
term corresponding to the observationmodel [Eq. (9)]
with the zero-mean Gaussian noise. The following
quadratic and linear penalties correspond to the
forward diffraction propagation (6), and they are in-
volved with the same positive parameters 1∕γr. Here
�·�H stands for the Hermitian conjugate, fΛrg ∈ Cn

are the complex-valued vectors of the Lagrange
multipliers (see [34]), and J 1 becomes therefore the
augmented Lagrangian objective function with
respect to the constraint concerning the diffraction
propagation model. v0 � Ψaθa∘ exp�i ·Ψφθφ� is an
approximation of the complex-valued object u0.
~u0 � u0∘uB, ~v0 � v0∘uB, and the last quadratic
penalty corresponding to the synthesis (11) is
involved with the parameters 1∕γ0.

The criteria J 2;a and J 2;φ are defined as follows:

J 2;a�θa; a0� �
1
2
‖θa −Φa · a0‖2

2 � τa · ‖θa‖1; (13)

s:t: a0�k� �
�
β1; for k ∈ X1;
β1; for k ∈ X0;

(14)

J 2;φ�θφ;φ0� �
1
2
‖θφ −Φφ · φ0‖

2
2 � τφ · ‖θφ‖1: (15)

The first terms in Eqs. (13) and (15) corresponds to
the analysis Eqs. (10), and they are calculated for the
true object amplitude and phase. The positive pa-
rameters τa and τφ define a balance between the
fit of the calculated spectra of the object amplitude
and phase and the complexity of the used model.
The additional constraint (14) is difficult to be rear-
ranged by a penalty; thus the computation of the true
object amplitude is realized with a spacial algorithm.

4. Proposed Algorithm

The flowchart of the proposed phase-retrieval algo-
rithm is shown in Fig. 2. Here we estimate the
background using the free-space object and then

extract the true object. It is assumed that two sets
of experiments aremade consistently under the same
condition: the calibrationprocedure giving foBr g to find
ûB and recording of forg used to compute û0.

A. Background Reconstruction

We record a number of intensity observations foBr g
with various masks fMrg for the free-space object
(test image u0�k� � 1), and find a complex-valued
estimate ûB ( ~u0 ≡ uB) by optimizing the criterion
function

J AL �
XK
r�1

1

σ2r

�
1
2
‖oBr − jurj2‖2

2 �
1
γr
‖ur − Ar · uB‖2

2

� 2
γr

RefΛH
r · �ur − Ar · uB�g

�
� μ · ‖uB‖2

2: (16)

The estimate ûB can be computed using the augmen-
ted Lagrangian (AL) algorithmwell described in [34].
This stage is shown in the upper block of Fig. 2 high-
lighted by a dashed line.

The main difference of J AL from J 1 consists of
the last quadratic penalty term. μ in Eq. (16) is
the Tikhonov regularization parameter that defines
a balance between the prior information on uB and
the fitting of calculated intensities jurj2 to the given
observations oBr . Note that in contrast to [34] the
criterion J AL is presented with respect to the
background uB but not to the true object.

B. Object Wave Field Reconstruction for Arbitrary
Complex-Valued Object

We record intensity measurements for an object forg
using the same masks fMrg as before, and recon-
struct the true object wave field using the found
background estimate ûB. According to the general
idea of the multiobjective optimization, where the
alternating minimization of two criteria J 1 with

Fig. 2. Flowchart of the proposed phase-retrieval technique with
the background compensation. The upper block highlighted by a
dashed line represents the background calibration procedure,
where the complex-valued estimate of uB is found by AL [34].
The reconstruction of the object using the background estimate
is obtained by the proposed SPAR–BC algorithm.
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respect to ~u0 � u0 ∘uB and furg and J 2 on θa and θφ
are exploited [23,32,33], we use the following itera-
tive algorithm:

ut0�k� � ~ut0�k�∕ûB�k�; (17)

θta � arg min
θa

J 2;a�θa; abs�ut0��; (18)

θtφ � arg min
θφ

J 2;φ�θφ; angle�ut0��; (19)

~vt0 � Ψaθta ∘ exp�i ·Ψφθtφ�∘ ûB; (20)

utr � arg min
ur

J 1�or; ~ut0; ur;Λt
r; ~vt0�; (21)

Λt�1
r � Λt

r � αr · �utr − Ar · ~ut0�; r � 1;…K; (22)

~ut�1
0 � arg min

~uo
J 1�forg; ~u0; futrg; fΛt

rg; ~vt0�: (23)

Here we first estimate the true object [Eq. (17)] by
compensation of the disturbed ~ut0 with the back-
ground estimate ûB. This results in the object ampli-
tude and phase estimates. Then, Eqs. (18) and (19)
enable the spectrum estimates of the object ampli-
tude [provided Eq. (8)] and phase by thresholding in
the BM3D-frame domain with the thresholds τa and
τφ, respectively [31,32]. Equation (20) corresponds to
the synthesis of the approximation ~vt0 of the
disturbed object from the calculated spectra for the
true object amplitude and phase and using
the background ûB. Equations (21) and (23) are the
minimization steps for J 1: the computation of
the complex-valued wave field estimates furg at the
sensor planes and the disturbed object ~u0 from noisy
intensity observations forg. The update of the
Lagrange variables (derived from the maximization
of J 1 on Λr) is shown in Eq. (22).

This second stage is illustrated in Fig. 2 under the
mentioned block for the background estimation.

Suppose there is no prior information on the object
amplitude, and hence no additional constraint in the
criterion J 2;a. Then, together the operations in
Eqs. (18)–(20) related to the optimization of J 2 can
be rewritten in a more compact form as follows:

at�1∕2
0 � BM3Da�abs�ut0��;

φt�1∕2
0 � BM3Dφ�angle�ut0��;

~vt0 � at�1∕2
0 ∘ exp�i · φt�1∕2

0 �∘ûB; (24)

where BM3D�·� denotes hereafter the processing by
the BM3D filter, and the corresponding subindices
a and φ emphasize that the filtering is performed

with different parameters and different transform
matrices Ψa, Φa and Ψφ, Φφ for the amplitude and
phase, respectively. In our implementation of the
BM3D filter analysis and synthesis operations, the
thresholding and calculation of the frame transform
matrices are integrated in a single block.

Thus, the algorithm (17)–(23) represents the D–AL
from [24] {or the sparse phase amplitude reconstruc-
tion (SPAR) algorithm from [23] except the Lagrange
multipliers}, but with the additional background
compensation procedure.

C. Object Wave Field Reconstruction for Complex-Valued
Object with Binary Amplitude

In order to take into consideration the structure of a0
and therefore improve the reconstruction quality, a
special modification of the filtering procedure (24)
is developed.

First, we estimate the subsets Xt
0 and Xt

1, corre-
sponding to the lower β0 and upper β1 levels of a0
[see Eq. (8)], with the thresholding parameter ρt as
follows:

Xt
0 � fat0�k�∶0 ≤ a�k�t0 ≤ ρtg;

Xt
1 � fat0�k�∶at0�k� > ρtg: (25)

This thresholding parameter ρt is calculated using
the Otsu algorithm [35]. Second, the estimates βt1
and βt0 are computed as medians of at0 � abs�ut0� over
the found subsets Xt

0 and Xt
1 as

βt0 � medianat0 �k�∈Xt
0
�at0�k��;

βt1 � medianat0 �k�∈Xt
1
�at0�k��: (26)

The BM3D filtering of the object amplitude is
replaced by

at�1∕3
0 � BM3Da�abs�ut0� − βt0� � βt0;

at�1∕2
0 � BM3Da�at�1∕3

0 − βt1� � βt1; (27)

where successive subtractions of βt0 and βt1 make the
image smoother first in the area of low values of
binary object amplitude and after that in the area
of its high values.

For the phase filtering we make no partitioning in
two subsets as for the object amplitude, because for
the considered u0 the phase is assumed to be con-
stant, in particular equal to zero. Thus, the only mod-
ification [and the difference from Eq. (24)] concerns
in the update of the object amplitude. The back-
ground compensation and the above-mentioned
modification of the BM3D filtering results in the
proposed phase-retrieval algorithm especially for
an object with a binary amplitude, which is different
from D–AL [24] (SPAR [23]).
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D. Sparse Phase Amplitude Reconstruction with
Background Compensation (SPAR–BC)

Assume that the background estimate ûB is found
by AL; then Eqs. (17)–(23) give the advanced
phase-retrieval approach with background compen-
sation. Taking into account Eqs. (25)–(27), the recon-
struction of the true object wave field is performed by
theproposed iterative algorithmdefined in the follow-
ing form:

Algorithm: SPAR–BC
Input: foBr gKr�1, forgKr�1
Initialization: ûB, ~u00, fΛ0

r g
Repeat for t � 0; 1;2;…
1. Object update (background compensation):
ut0�k� � ~ut0�k�∕ûB�k�
2. Update of the Otsu’s threshold ρt

3. Update of X0 and X1 [Eq. (25)]
4. Update of the levels βt0 and βt1 [Eq. (26)]
5. BM3D filtering:

at�1∕3
0 � BM3Da�abs�ut0� − βt0� � βt0,

at�1∕2
0 � BM3Da�at�1∕3

0 − βt1� � βt1,

φt�1∕2
0 � BM3Dφ�angle�ut0��

6. Object approximation synthesis:
vt�1
0 � at�1∕2

0 ∘ exp�i · φt�1∕2
0 �

Repeat for r � 1;…K
7. Forward propagation:
ut�1∕2
r � Ar · ~ut0

8. Observation filtering:
ut�1
r �l� � G�or�l�; ut�1∕2

r �l�;Λt
r�l��∀l

9. Lagrange multipliers update:
Λt�1

r � Λt
r � αr · �ut�1

r − ut�1∕2
r �

End on r
10. Disturbed object update:

~ut�1
0 �

�P
K
r�1

1
γrσ

2
r
AH

r Ar � 1
γ0
· I
	
−1

×
PK

r�1
1

γrσ
2
r
AH

r · �ut�1
r �Λt

r� � 1
γ0
· �ûB∘vt�1

0 �
End on t

We name this algorithm Sparse Phase Amplitude
Reconstruction with Background Compensation
(SPAR–BC).

The initialization concerns the calculation of the
background (byAL), the initial guess for thedisturbed
object ~u0

0 � ~uinit
0 (e.g., by D–AL [24] or again by AL

[34]) and Lagrange multipliers (e.g., Λ0
r �k� � 0).

The transform matrices for both the synthesis Ψa,
Ψφ and analysisΦa,Φφ may be constructed only once
during the initialization procedure ormay be periodi-
cally updated. In this work we calculate these ma-
trices only ones for the compensated object
amplitude abs� ~u00�k��∕abs�ûB�k�� and phase estimates
angle� ~u00�k�� − angle�ûB�k��.

Note that the output of the SPAR–BC phase-
retrieval algorithm is not the estimate of the dis-
turbed ~u0 (step 10), but the estimate of the true object
wave field u0 calculated in step 1. The object ampli-
tude approximation is performed by the consistent
application of the Otsu method to separate the
values of at0 into two subsets (steps 2–3), find the es-
timates of the lower and upper levels (step 4), and
filter it with respect to these two estimated levels

(step 5). The derivations of main steps of SPAR–BC
[the minimization in Eqs. (18), (19), (21), and (23)]
can be found in our previous works [23,24,34].
Step 7 returns the wave field ut�1∕2

r at the sensor
plane corresponding to the forward propagation
model with the optical mask Mr. Step 8 gives the
updates of ut�1∕2

r by their fitting to the observations
or. The operator defining this update is denoted as G
and described in [34] [Appendix A].

It is shown in [23] that the object reconstruction
with BM3D filtering can be realized without
Lagrange multipliers. However, it is found (see [24])
that fΛrg may essentially help to recover small de-
tails of the object. In step 9 fΛt

rg are updated with
the step αr, and in our experiments we take a fixed
step αr � α � 1∕20 for all K observations.

In this work we use the same noise variation at all
sensor planes (σ2r � σ2) and take the equal param-
eters for the Lagrangian multipliers, γr � γ. Then,
it is easy to see that the estimate ~ut0 computed in step
10 of SPAR–BC consists of two parts: the disturbed
object estimate calculated from the noisy intensity
observations and the filtered object approximation
found from the output of the BM3D filter. This step
of the algorithm can be given in the form

~ut�1
0 �

XK
r�1

Br · �ut�1
r �Λt

r� � κ · ~vt�1
0 ; (28)

where ~vt�1
0 � ûB ∘ vt�1

0 and the transform matrix Br is
given in the form

Br �
 XK

r�1

AH
r Ar � κ · In×n

!
−1

· AH
r ; (29)

κ � γσ2∕γ0. In particular, for all our experi-
ments κ � 90∕25.

5. Numerical Results

In this section an advanced performance of the
proposed algorithm is demonstrated by the ampli-
tude reconstruction from noisy disturbed experimen-
tal data.

A. Settings of Parameters

In our physical experiments one considers K � 5
measurement planes separated from each other by
the distance Δz � 2 mm. Thus, in Eq. (7) zr �
z1 � �r − 1� ·Δz are the the distances between the ob-
ject and sensor planes, r � 1;…K , and z1 � 20 mm is
the distance from the object to the first measure-
ment plane.

Evidently the experimental results at the sensor
plane are different from the output of the model cal-
culated using the angular spectrum decomposition
(ASD, [14]) because of the bandlimitedness of the
finite-size SLM with the real fill factor of the pixels
less than 100%. Despite the fact that the used dis-
crete model of the forward wave field propagation
[Eq. (5)] does not accurately reflect the diffraction
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propagation in the 4f optical system, the arising dif-
ference is considered as a component of the back-
ground uB to be estimated and compensated.

In our discrete wave field propagation model, the
pixels at the sensor and Fourier planes are square
of the different size Δy1 � Δy2 � 3.45 μm and
Δv1 � Δv2 � 8 μm, respectively, with 100% fill
factor [36,37]. The object is pixelated with the sensor
size pixels: Δx1 � Δx2 � Δy1 � Δy2 . The transparent
U.S. Air Force resolution test chart MIL-STD-150A
inserted in the front focal plane of the first lens L1
is illuminated by collimated coherent light with wa-
velength λ � 532 nm (i.e., a green Nd:YAG laser is
used). The employed SLM was supplied by Holoeye
Photonics AG and configured to provide full 2π phase
modulation. The focal distance of lenses used in the
4f configuration is f � 150 mm, which equates with
the image size 2892 × 2892 pixels according to the
sampling conditions (4). The measurement area is
smaller and here we reconstruct only a part of the
object of the size Nx ×Ny (2048 × 2048 pixels) for
the corresponding computational focal distance f c �
106.25 mm [see Eq. (5)]. Note that in Eq. (7), defining
the optical masks Mr, f � 150 mm.

The algorithm is implemented for a graphic pro-
cessing unit (GPU) in order to use the advantage
of parallel processing of ut�1

r and ut�1
0 . The GPU rea-

lization results in a significant acceleration that is
crucial especially for large images [24]. The pre-
sented results are computed in MATLAB 7.13
(R2011b) using GPU Nvidia GF460GTX with CUDA
4.1. The computer used for experiments is Intel i5
2500 (four physical cores) at 3.3 GHz, 8Gb RAM,
Windows 7 SP1.

B. Initialization for SPAR–BC: Reconstruction Without
Background Compensation

As mentioned, typically phase-retrieval methods do
not incorporate the compensation of the disturbances
in the optical system, and in case of real data result
in the estimate of ~u0 with imaging that is far from the
theoretical prediction. Let us consider the object re-
construction from the experimental data obtained by
two fundamentally different multiplane iterative
phase-retrieval techniques: by the mentioned paral-
lel AL based algorithm [34] and the successive algo-
rithm described in [38]. The second algorithm is close
to the circular wave reconstruction originating in
[12,13]: the calculated amplitude is replaced by the
square root of the given noisy intensity, keeping
the calculated phase (the initial guess for the phase
is zero). For simplicity, we refer to the latter algo-
rithm as the Falldorf–Agour (FA) algorithm.

In Fig. 3 we present the comparison of the recon-
struction imaging of the disturbed object found by
the mentioned methods. In the right column, the es-
timates of the disturbed object phase and amplitude
computed by the FA algorithm [38] are illustrated;
see Figs. 3(b) and 3(d), respectively. In the left col-
umn, the reconstructed disturbed object phase and
amplitude found by AL [34] are demonstrated; see

Figs. 3(a) and 3(c), respectively. These quite poor
results are obtained using 25 iterations of the
algorithms. The artifacts that definitely should be
addressed to the background are clearly seen in these
images. It can be seen that the amplitude estimate by
AL is significantly oversmoothed compared with the
result by FA. It is manifested in partial suppression
of the diffraction artifacts on the geometrical ele-
ments with some degradation of a smooth surface
as well. The phase reconstructions are not flat and
have certain errors in the regions of the digits and
geometrical figures in the amplitude. The phase by
AL has stronger degradation of the phase compared
with the phase calculated by FA, because of a weak
correction of the object reconstruction by Lagrange
multipliers (note that the correction of the phase
by larger α leads to more noisy amplitude reconstruc-
tion or oversmoothing).

It is recognized that even the powerful BM3D-
frame filtering can not extract a sharp object ima-
ging; see, e.g., Figs. 5 and 6 in [24] for the binary
amplitude object reconstructions. These imperfect
object estimates, in particular the AL reconstruction,
are just used as initializations ~u00 � ~a00 ∘ exp�i · ~φ0

0�
for the main procedure of the SPAR–BC algorithm.

C. SPAR–BC: Reconstruction with Background
Compensation

The background reconstruction is produced with the
calibration experiments for the free-space object
u0�k� � 1. The reconstructed background amplitude
appears quite noisy; thus an additional BM3D post-
filtering of the found background ûB is introduced.

Fig. 3. Reconstructions of the “disturbed” object computed by (left
column) AL and (right column) FA [38]. In the top row the ampli-
tude reconstructions are presented by (a) AL and (c) FA. In the
bottom row we demonstrate the phase estimates by (c) AL and
(d) FA. The AL object reconstruction [ ~u00 � ~a00∘ exp�i · ~φ0

0� with ~a00
from (a) and ~φ0

0 from (c)] is used for the initialization of SPAR–BC.
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We use the smoothed version of this background re-
construction with no high-frequency components.
Figure 4(a) demonstrates the filtered amplitude of
the background BM3Da�abs�ûB��. The cross sections
of the original âB � abs�ûB� and smoothed ~aB �
BM3Da�âB� background amplitudes are illustrated
in Fig. 5. The result of the compensation of the initial
object amplitude by such a smoothed background
a00�k� � abs� ~u00�k��∕~aB�k� is shown in Fig. 4(b). The cor-
responding cross section is presented in Fig. 7.

The results of the object reconstruction calculated
by the developed SPAR–BC algorithm using 25
iterations are shown in Fig. 6. In Figs. 6(a) and 6(b),
the object amplitude reconstruction found with the
smoothed and original background estimates, respec-
tively, is presented. The reconstructed object phase
angle�û0� is illustrated in Fig. 6(d). The threshold
parameter of the BM3D filtering in SPAR–BC is τa �
0.13 for the object amplitude and τφ � 2 for the phase.

It can be seen that the imaging of the amplitude
estimate obtained using the smoothed background
[Fig. 6(a)] is essentially better compared with the re-
construction computed by the background without
postfiltering: the artifacts are well seen on the border
of Fig. 6(b). Further improvement of the imaging can
be achieved by the additional BM3D postfiltering of
the reconstructed û0: in Fig. 6(c), remaining noise
and artifacts are shown to be suppressed. It provides
crisp imaging, but the resulting amplitude is over-
smoothed and small details are almost lost. The
result of postfiltering of â0 by 12 iterations with

Fig. 4. (a) Amplitude of the smoothed background
BM3Da�abs�ûB��. (b) Initial guess for the object amplitude
abs�u00� found with the smoothed background amplitude
abs� ~u00��k�∕BM3Da�abs�ûB���k�.
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Fig. 5. (Color online) Cross sections of the amplitude estimate
of the background [thin curve, âB � abs�ûB�] and its smoothed
version computed by a BM3D filter [thick curve, BM3Da�âB�].

Fig. 6. Object reconstruction by SPAR–BC. The reconstruction of
the object amplitude abs�û0� with (a) smoothed background
BM3Da�abs�ûB�� and (b) original background �abs�ûB��. (c) Result
of postfiltering of the object amplitude BM3Da�abs�û0�� [given in
(a)], τa � 0.04. (d) Object phase estimate angle�û0� with the
smoothed background.
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Fig. 7. (Color online) Cross sections of (solid thin curve) the initial
guess a00 � abs�u00�, (solid thick) the reconstructed amplitude
â0 � abs�û0�, and (dashed curve) the filtered amplitude estimate
BM3Da�â0�. These results are related to the imaging presented
in Figs. 4(b), 6(a), and 6(c), respectively. The cross sections are
given along the dashed line in Fig. 6.
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Fig. 8. (Color online) Cross sections of the reconstructed object
phase φ̂0 � angle�û0� and the filtered phase BM3Dφ�φ̂0�,
τφ � 0.08. These results are shown along the dashed lines shown
in Fig. 6(d).
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τa � 0.04 is presented in Fig. 6(c) and the correspond-
ing cross section in Fig. 7.

As for the phase, even with a large thresholding
τφ � 2 we have relatively large noise in the phase
estimate [see Fig. 6(d)], because at each iteration
we deal with noisy estimates of ur computed from the
given intensity observations [see Eq. (28)]. Assuming
that φ0�k� � 0, RMSE � 0.2 for the object estimate.
However, we can completely wipe the phase noise
out by (again) the mentioned additional BM3D post-
filtering with quite a small τφ � 0.08: compare the
cross sections of φ̂0 and BM3Dφ�φ̂0� in Fig. 8.

6. Discussion and Conclusion

In general, there are at least two alternatives for the
update of the object amplitude in the proposed
SPAR–BC algorithm (steps 2–5). If one ignores a
priori information on the structure of a0 and uses
Eqs. (24) without the modifications given in
Eqs. (25)–(27), then steps 2–4 vanish and SPAR–BC
becomes the D–AL algorithm from [24] with the back-
ground compensation procedure. On other hand, the
BM3D filtering of a0 can be replaced by only direct
binarization: at�1∕2

0 �k� � βt0, if at�1∕2
0 �k� ∈ Xt

0 and
at�1∕2
0 �k� � βt1—otherwise. In the latter case BM3D

filtering of the object amplitude is found to be not
productive, and it vanishes from step 5 of SPAR–
BC. In Fig. 9 we illustrate fragments of the amplitude

reconstructions â0 by these approaches: by SPAR–BC
[Fig. 9(a)], by such D–AL with the background com-
pensation with BM3D filtering only [Fig. 9(b)], and
by the mentioned binarization only, without filtering
of the amplitude [Fig. 9(c)]. The corresponding cross
sections are demonstrated in Fig. 10. It can be seen
that the upper and lower levels of the reconstructed
amplitudes found by the first alternative (D–AL with
the background compensation denoted in Fig. 10 by
“D–AL with BC”) are far from being flat, which affects
the imaging. The result of binarization is corrupted by
impulse (salt and pepper) noise, and in spite of more
contrast imaging the reconstruction accuracy in terms
of RMSE is worse compared with the original SPAR–
BC because there are a lot of errors on the upper level,
and â0 jumps between 0.16 and 0.9.

It can be seen that the flattening with the BM3D-
frame filtering in SPAR–BC works as a classifier for
the noisy binary object estimate. The estimate of the

Fig. 9. Fragments (384 × 384) of â0 with different updates of the object amplitude in SPAR–BC: (a) flattening and BM3D filtering (original
SPAR–BC), (b) BM3D filtering only (which is similar to D–AL [24] with the background compensation), and (c) binarization only. The
original SPAR–BC (a) enables a relatively flat surface with no significant noise with some oversmoothing. Exclusion of the flattening
in BM3D filtering (b) results in a strong degradation of the reconstructing levels. The binarization only used to estimate â0 (c) leads
to more contrast imaging but strong corruption by impulse noise.
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Fig. 10. (Color online) Cross sections of the fragments of â0 pre-
sented in Fig. 9. Here the only use of the BM3D filter for the object
amplitude update is denoted by “D–AL with BC.”
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Fig. 11. (Color online) Partition produced according to the flat-
tening with BM3D filtering [Eqs. (25)–(26)].H�a00� is the histogram
for the initial estimate of the object amplitude (solid curve,
a00 � abs�u00�), presented in Fig. 4(b). H�â0� is the histogram for
the resulting object amplitude estimate after 25 iterations [dashed
curve, â0 � abs�û0�], illustrated in Fig. 6(a). (ρ0, β01, β

0
0) and (ρ̂, β̂1,

β̂0) are Otsu’s threshold, the upper and lower levels of the initial
and resulting object estimates, respectively.
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amplitude levels is found using the Otsumethod [35],
but the BM3D filtering shifts the value of the pixel
at0�k� to one of these two levels βt0 or βt1 depending
on the local neighborhood. The result of partitioning
is presented in Fig. 11. LetH�·� stand for a histogram
of a discrete distribution. The histogram H�a00� for
the initial estimate of the compensated object
amplitude is denoted in Fig. 11 by a solid curve,
and the histogram of the resulting â0 is denoted by
a dashed curve. With 25 iterations we arrive at
the obviously binary â0. In Fig. 11 we also present
the estimated levels of the object amplitude (initial
β00, β

0
1 and resulting β̂0, β̂1) and the Otsu threshold

(for the initialization ρ0 and the final step ρ̂). Note
that blurred regions [see small details and borders
on the geometrical elements, e.g., in Fig. 6(a)] corre-
spond to a “sloping valley” between two peaks of
H�â0� in Fig. 11.

In this paper, a novel phase-retrieval algorithm
with background compensation and powerful BM3D
filtering is presented. It is shown that the proposed
SPAR–BC algorithm demonstrates a very good re-
construction quality: we have a clear separation of
the binary true object, and the background estimate
“undertakes” strong fluctuations, which would be dif-
ficult to compensate by filtering only [24, cf. Fig. 5].
The reconstructions by two different phase-retrieval
methods (AL and FA) are presented to emphasize the
obtained enhancement of imaging of the developed
algorithm with respect to modern phase-retrieval
algorithms with no background compensation (com-
pare the results in Figs. 3 and 6).
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