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A complex-valued wave field is reconstructed from intensity-only measurements given at multiple observation
planes parallel to the object plane. The phase-retrieval algorithm is obtained from the constrained maximum like-
lihood approach provided that the additive noise is Gaussian. The forward propagation from the object plane to the
measurement plane is treated as a constraint in the proposed variational setting of reconstruction. The developed
iterative algorithm is based on an augmented Lagrangian technique. An advanced performance of the algorithm is
demonstrated by numerical simulations. © 2011 Optical Society of America
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1. INTRODUCTION
Phase retrieval is a problem of estimating the phase of a com-
plex-valued wave field from intensity observations. The phase
is recovered, mainly iteratively, from a number of intensity
measurements made at different observation planes. Phase-
retrieval algorithms have being exploited in several areas,
such as microscopy, crystallography, astronomy, and defor-
mation detection. Experimental arrangements for phase-
retrieval methods are often simpler and cheaper than for
interferometric ones, which require a reference beam. An im-
portant advantage of phase-retrieval techniques is their high
robustness to disturbances (e.g., vibration), which degrade
the accuracy in interferometry.

In 1972, Gerchberg and Saxton [1] proposed a simple and
efficient iterative algorithm for phase retrieval, initially for a
single observation plane. Generalization and development of
this algorithm for various applications has been done by many
authors (e.g., [2,3]). Fienup systematized the earlier works
and, in 1982, introduced the following classes of iterative
phase-retrieval algorithms: the error-reduction, gradient
search, and input–output methods [4].

The mathematical formulation of the phase-retrieval pro-
blem, the existence and uniqueness of solution, and the
convergence of the algorithms have been comprehensively
studied in a number of publications (e.g., [5,6] and references
within the papers). New connections between the conven-
tional phase-retrieval algorithms and convex optimization
methods were established in [7]. It is shown that these algo-
rithms can be identified as nonconvex alternating projection
algorithms. In particular, the iterative Gerchberg–Saxton–
Fienup algorithms can be interpreted as the iterative projec-
tions at the sensor and object planes. This interpretation
highlights the nature of these algorithms as well as gives an
opportunity to design novel algorithms with flexible use of
an extra information on measurements and reconstructed
distributions.

In our work, we consider the problem of the optimal wave
field reconstruction from intensity observations. In order to
achieve this goal, we use a variational constrained maximum
likelihood formulation. The phase-retrieval algorithm is ob-
tained as a solution of this optimization problem.

Let us introduce basic notation and consider the multiplane
wave field reconstruction scenario in order to make clear our
formulation and review relevant publications.

Assume that u0ðxÞ and urðxÞ, r ¼ 1; :::K , denote complex-
valued wave field distributions at the object and sensor
planes, respectively, given in lateral coordinates x ∈ R2. The
index r corresponds to a distance zr ¼ z1 þ ðr − 1Þ ·Δz be-
tween the parallel object and the rth observation plane, where
Δz is a distance between the observation planes and K is a
number of these planes. It is assumed that the wave field dis-
tributions at the object and sensor planes are pixelated, i.e.,
they are pixelwise invariant. In discrete modeling, a continu-
ous variable x is replaced by a digital one with the correspond-
ing replacement of continuous distributions by their discrete
counterparts: u0ðxÞ → u0½k�, urðxÞ → ur ½k� with a two-
dimensional (2D) integer argument k.

Discrete intensity observations are given in the form

or ½k� ¼ jur ½k�j2 þ εr ½k�; r ¼ 1; :::K; ð1Þ

where the wave field intensity (power) is measured with an
additive random error εr ½k�.

For simplicity and referring to the central limit theorem, we
assume that the resulting noise εr is zero-mean Gaussian, with
the standard deviation σr for the rth plane, i.e., εr½k�∼
N ð0; σ2rÞ. This approach can be extended to more complex
distributions, such as Poissonian and mixed Poissonian–
Gaussian.

The problem at hand is to reconstruct pixelated complex-
valued wave field distributions at the object u0½k� and sensor
planes ur ½k� from the noisy intensity data or ½k�. This multiplane
setup is illustrated in Fig. 1.

Migukin et al. Vol. 28, No. 6 / June 2011 / J. Opt. Soc. Am. A 993

1084-7529/11/060993-10$15.00/0 © 2011 Optical Society of America



In this paper, we use a vector-matrix notation for complex-
valued distributions of the wave fields at the object and sensor
planes as Cn×1 vectors. For 2D discrete distributions (ma-
trices) of the size N ×M , the complex-valued vector variables
of the length n ¼ N ·M are constructed by concatenating
columns of these matrices. Bold lower case characters are
used for these vectors.

With this notation, the forward wave field propagation from
a diffraction (object) plane with a complex-valued distribution
u0 gives a complex-valued distribution ur at the rth image
(sensor) plane as

ur ¼ Ar · u0; ð2Þ
where Ar is the forward propagation operator from the object
plane to the rth sensor plane. For u0 and ur of the same sizes,
this operator is a complex-valued n × n matrix, Ar ∈ Cn×n.

In the vector-matrix notation, Eq. (1) takes the form

or ¼ jur j2 þ εr; r ¼ 1; :::K; ð3Þ
where the modulus j · j and square of modulus j · j2 are the
elementwise operations applied to the elements of the corre-
sponding vectors; thus, j · j and j · j2 are vectors composed
from the modulus and square modulus of the elements of
the corresponding vector.

We consider a coherent light scenario with the paraxial
approximation of the wave field propagation based on the
Rayleigh–Sommerfield integral [8].

The operator Ar in Eq. (2) is specified by discretization of
this integral. Depending on the discretization used, this dis-
crete forward propagation model can be: convolutional single
or double size [9], angular spectrum decomposition (ASD) [8],
the recent discrete diffraction transform (DDT) given in the
matrix (M-DDT) [10] or frequency domain (F-DDT) forms
[11]. These DDT models are obtained for the Fresnel approx-
imation of the Rayleigh–Sommerfield integral and enable an
accurate pixel-to-pixel mapping of the pixelated u0 to ur .

The wave field ur can be generated by the object distribu-
tion u0 [according to Eq. (2)] as well as by the wave field from
any previous sensor planes (say, us, zs < zr) [12]:

ur ¼ Ar;s · us; ð4Þ
where Ar;s denotes a propagation operator from the sth to the
rth sensor plane.

These two different interpretations of the wave field propa-
gation [Eqs. (2) and (4)] result in the corresponding parallel
and successive algorithms for phase retrieval.

In this paper, the phase-retrieval problem is reduced to
the reconstruction of the complex-valued u0 from the given

observations [Eq. (3)]. Then the three-dimensional wave field
can be reconstructed for any longitudinal coordinate z, for
instance, for any sensor plane.

A. Parallel Algorithms
A multiplane version of the iterative Gerchberg–Saxton–
Fienup algorithm can be given in the vector-matrix notation
as:

ûðpÞr ¼ Ar · û
ðpÞ
0 ; p ¼ 0; 1; :::;

ûðpþ1Þ
0 ¼ 1

K

XK
r¼1

AH
r ·

� ffiffiffiffiffi
or

p

jûðpÞr j
∘ûðpÞr

�
; ð5Þ

whereAH
r ¼ ðA�

rÞT is the Hermitian transpose ofAr , and or are
the intensity observations.

In Eq. (5), the operations in the square brackets are

Hadamard elementwise, i.e.,
ffiffiffiffiffi
or

p

jûðpÞr j
is a vector obtained by

the elementwise division of the vector
ffiffiffiffiffi
or

p
by jûðpÞr j. Multipli-

cation of the vectors
ffiffiffiffiffi
or

p

jûðpÞr j
by ûðpÞr is also elementwise. Thus," ffiffiffiffiffi

or
p

jûðpÞr j
∘ûðpÞr

#
is a vector. Note that the multiplication ûðpÞr by

ffiffiffiffiffi
or

p

jûðpÞr j
means a replacement of the magnitude of ûðpÞr by

ffiffiffiffiffi
or

p
,

keeping the phase of ûðpÞr .
The algorithm in Eq. (5) works as follows: at the pth itera-

tion, the estimates at the sensor planes are calculated by the

object estimate ûðpÞ0 , as in Eq. (2). Then the moduli of the es-

timates ûðpÞr are replaced by the observed
ffiffiffiffiffi
or

p
and these up-

dated ûðpÞr are propagated backward to the object plane by
multiplying these estimates by AH

r . In this way we obtain K

object wave field estimates of the form AH
r ·

" ffiffiffiffiffi
or

p

jûðpÞr j
∘ûðpÞr

#
.

The sample mean of these estimates gives the object esti-
mate for the next iteration. These iterations are repeated until
convergence.

It is shown for this algorithm that the discrepancy between
the measured and reconstructed magnitudes, calculated as
J1 ¼

P
r jj

ffiffiffiffiffi
or

p
− jur jjj2, can never increase between iterations

[4].
A different variational formulation of phase retrieval is de-

veloped in [13] with minimization of the divergence between
the measured and reconstructed intensities calculated
as J2 ¼

P
r jjor − jur j2jj2.

The approach proposed in [14,15] is based on minimization
of the discrepancy between measured and reconstructed in-
tensities calculated using the probabilistic relative entropy
also known as the Kullback–Leibler (KL) criterion. It assumes
that the distributions are random and the criterion is of the
form

KL ¼
XK
r¼1

Z
R2
orðxÞ lg

orðxÞ
jurðxÞj2

dx: ð6Þ

The estimate is found as a solution of the constrained
optimization

Fig. 1. Multiple plane wave field reconstruction scenario: u0½k�
and ur ½k� are wave field distributions at the object and the rth parallel
measurement (sensor) plane, respectively, r ¼ 1; :::K .
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û0ðxÞ ¼ min
u0

KL provided
Z
R2
jorðxÞjdx ¼

Z
R2
jurðxÞj2dx:

ð7Þ

The iterative algorithm derived in [14] for Eq. (7) can be
represented as

ûðpÞr ¼ Ar · û
ðpÞ
0 ; p ¼ 0; 1; :::;

ûðpþ1Þ
0 ¼ 1

K
K
X
r¼1

AH
r ·

"
or

jûðpÞr j2
∘ûðpÞr

#
; ð8Þ

where operations for
or

jûðpÞr j2
∘ûðpÞr are elementwise, as in Eq. (5).

The algorithm in Eq. (8) is different from Eq. (5) by the
weights for ûðpÞr . Instead of the ratio of the moduli in Eq. (5),
the ratio of the intensities (squared moduli) appears in Eq. (8).

A discussion on connections between the algorithm in
Eq. (8) with the algorithms based on minimization of J1

and J2 can be found in [14].
In [16], we presented an algorithm of a structure similar to

Eq. (8) but with different propagation operators:

ûðpÞr ¼ Ar · û
ðpÞ
0 ; p ¼ 0; 1; :::;

ûðpþ1Þ
0 ¼

�XK
r¼1

AH
r Ar þ μ · In×n

�
−1

×
XK
r¼1

AH
r ·

" ffiffiffiffiffi
or

p

jûðpÞr j
∘ûðpÞr

#
; ð9Þ

where μ > 0 is a regularization parameter and σ2r is the var-
iance of the noise at the rth plane. This algorithm is derived
from the following speculations. The linear least square esti-
mate is obtained for û0, assuming that complex-valued obser-
vations are available for the sensor planes. In the algorithm,
the moduli of these hypothetically complex-valued data at the
sensor planes are replaced by the square roots of the measure-
ments. Note that, for invertible propagation operators (e.g.,
ASD) AH

r Ar ¼ I, and for μ ¼ 0, the algorithm in Eq. (9)
becomes Eq. (5).

The algorithms in Eqs. (5), (8), and (9) belong to the class of
the parallel algorithms. A specific feature of this class is that
the object distribution is the only unknown variable and all
observations are used in parallel for iterative calculation of
this variable.

B. Successive Algorithms
Recently, a circular phase-retrieval algorithm is proposed in
[17,18]. It is known as the single-beammultiple-intensity phase
reconstruction (SBMIR) algorithm. Let the wave fields at the
rth and ðr þ 1Þth planes be linked as urþ1 ¼ Arþ1;r · ur , where
Arþ1;r is an operator (matrix), connecting the wave field dis-
tributions at the corresponding planes. Then the forward–
forward algorithm as it is defined in [19] can be written in
the form

1: Repeat for p ¼ 0; 1; :::;

2: For r ¼ 1; :::K − 1; ûðpÞrþ1 ¼ Arþ1;r ·

" ffiffiffiffiffi
or

p

jûðpÞr j
∘ûðpÞr

#
;

3: For r ¼ K; ûðpþ1Þ
1 ¼ A1;K ·

" ffiffiffiffiffiffi
oK

p

jûðpÞK j
∘ûðpÞK

#
;

4: End on r;

5: End for p: ð10Þ

Here, similar to Eq. (5), the factor
ffiffiffiffiffi
or

p

jûðpÞr j
changes the module

of ûðpÞr by the observed value
ffiffiffiffiffi
or

p
for all r ¼ 1; :::K . In step 3 of

the algorithm, the wave field at the first sensor plane is recon-
structed by the wave field estimates from the Kth plane. A1;K

stands for the backward propagation operator from the Kth
sensor plane to the first one. The algorithm updates cyclically
the phase distributions at the observation planes. The recon-
struction of the wave field is performed by the successive pro-
pagation from one sensor plane to another up to convergence.

Similar to [12], the object distribution has not appeared and
has not been used in these iterations. In the successive algo-
rithms, the reconstruction is concentrated on the sensor
planes, where the observations are given. Contrary to it,
the object wave field distribution is the main variable in
the parallel algorithms updated in the iterations.

2. PROPOSED VARIATIONAL APPROACH
A typical variational setting for the Gaussian noise distribution
in the observation model in Eq. (3) results in the following
criterion:

J ¼
XK
r¼1

1

2σ2r
jjor − jur j2jj22 þ μ · penðu0Þ; ð11Þ

where the norm jj · jj22 is Euclidian.
The quadratic (fidelity) term in Eq. (11) appears due to the

assumption that the noise in observations is Gaussian. The fol-
lowing term is the penalty (regularization) including prior in-
formation on the object distribution u0 to be reconstructed.

The criteria J1 and J2 discussed in Subsection 1.A are ex-
amples of different metrics that can be used as fidelity terms
in variational formulations for wave field reconstruction.

A more general criterion of the form Jγ ¼
P

r jjoγ=2r − jur jγ jj22,
where γ is a parameter, is discussed in [20,21]. Mathematical
aspects of the difference between this criterion with γ ¼ 1 and
γ ¼ 2 are discussed in [5] and can be summarized as follows.
For γ ¼ 1, the criterion J1 is not differentiable. It makes the
mathematical analysis difficult and results in a lower conver-
gence rate. For γ > 1, the criterion becomes differentiable and
convenient for mathematical analysis. However, the experi-
ments show that the accuracy for γ ¼ 1 is better than that
for γ ¼ 2. As a compromise for γ ¼ 1, the criterion J1 can

be modified to the form J1;δ ¼
P

r jjo1=2r − jur j2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jur j2 þ δ

p
jj22,

where δ > 0 is small. J1;δ is considered a differentiable
approximation for J1. More complex criteria are used for
resolution-enhanced phase-retrieval methods with multiple
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subarrays of sensors [21,22]. The corresponding criteria usual-
ly have a form of sums of the squared residuals for the
subarrays.

In the criterion in Eq. (11), the choice in favor of γ ¼ 2 is
defined by the maximum likelihood approach and the assump-
tion that the noise is i.i.d. Gaussian.

A. Constrained Maximum Likelihood
Based on the criterion in Eq. (11), we formulate the
object wave field reconstruction as the following constrained
optimization:

û0 ¼ argmin
u0

XK
r¼1

1

2σ2r
jjor − jur j2jj22 þ μ · penðu0Þ

subject to ur ¼ Aru0; r ¼ 1; :::; K: ð12Þ
The regularization parameter μ in Eq. (12), as well as in

Eq. (11), defines a balance between the accuracy of the ob-
servation fitting and a prior given by the penalty penðu0Þ. If
μ ¼ 0, the solution û0 minimizes

P
r
1

2σ2r
jjor − jur j2jj22, ignoring

the fact that the data or are noisy. It can result in noisy and
nonsmooth û0. If μ > 0 is comparatively large, then the noise
effects are well suppressed but the solution û0 can be over-
smoothed, and important features lost. A proper selection
of μ is an important point of the variation formulation.

Numerous forms of the penalty penð·Þ are used in literature
on digital image processing derived from speculations varying
from probabilistic modeling of image distribution priors to
heuristic constructions (e.g., [23,24]).

In this paper, we use a simple quadratic Tikhonov’s penalty
[25] given in the form

penðu0Þ ¼ jju0jj22: ð13Þ

B. Augmented Lagrangian Method
By inserting Eq. (2) into Eq. (12), we can replace the con-
strained optimization by the unconstrained one:

û0 ¼ argmin
u0

J;

J ¼
XK
r¼1

1

2σ2r
jjor − jAr · u0j2jj22 þ μ · penðu0Þ : ð14Þ

Various gradient iterative algorithms (steepest descent,
Newton, and Gauss–Newton) can be applied to find a solution
of Eq. (14). The computational complexity of the gradient and
second derivatives used in these algorithms is one of the main
drawbacks of this unconstrained approach. Another principal
drawback is the low convergence rate of these algorithms. It is
recognized that a constrained optimization may lead to more
efficient algorithms.

The augmented Lagrangian (AL) method, introduced inde-
pendently by Hestenes [26] and Powell [27], is now standard
for minimization in the presence of linear equality constraints.
The AL criterion corresponding to Eq. (12) with complex-
valued variables is of the form

Lðu0; furg; fΛrgÞ ¼
XK
r¼1

1

σ2r

�
1
2
jjor − jurj2jj2 þ

1
γr

jjur − Ar · u0jj2

þ 2
γr

RefΛH
r ður − Ar · u0Þg

�
þ μjju0jj22; ð15Þ

where Λr ∈ Cn are the complex-valued Lagrange multipliers.
The parameters γr are positive.

The Lagrangian based optimization is associated with the
saddle problem, which requires minimization on u0; furg and
maximization on the vectors of the Lagrange multipliers fΛrg.

In Eq. (15), the linear constraints ur − Ar · u0 ¼ 0 are used
both in the linear and quadratic terms. If we keep only the
quadratic terms, the augmented Lagrangian becomes the pen-
alty criterion, which can be used assuming that the penalty
coefficient 1=γr is large. As a rule, it leads to computational
difficulties because this criterion can be very ill-conditioned.
If we keep only the linear term, the AL becomes the standard
Lagrangian. However, the saddle point of this standard La-
grangian is unstable. It may lead to problems with numerical
calculations. The stability of the saddle point of AL is one of
the principal advantages of this criterion.

The successive steps of AL optimization are as follows:

ðutþ1
0 ; futþ1

r gÞ ∈ arg min
u0;furg

Lðu0; furg; fΛt
rgÞ; ð16Þ

Λtþ1
r ¼ Λt

r þ αr · ðutþ1
r − Ar · ut0Þ; r ¼ 1; :::; K: ð17Þ

Note that, in Eq. (16), the minimization on u0, furg is pro-
duced for fixed fΛt

rg. The steps on the Lagrangian multipliers
[Eq. (17)] are produced in the gradient direction (according to
the minimum condition ∇Λ�

r
L ¼ 0) with the step size αr .

Alternating direction multiplier methods have been exten-
sively developed to minimize the AL criteria. In these meth-
ods, the optimization variables (in our case u0, furg) are
partitioned into several blocks according to their roles, and
then the augmented Lagrangian function is minimized with
respect to each block by fixing all other blocks at each inner
iteration [28]. It leads to the alternating minimization on u0,
furg, and results in the algorithm

For t ¼ 0; 1; :::;

For r ¼ 1; :::K;

utþ1
r ∈ argmin

furg
Lðut0; furg;fΛt

rgÞ; ð18Þ

Λtþ1
r ¼ Λt

r þ αr · ðutþ1
r − Ar · ut0Þ;

End on r; ð19Þ
utþ1
0 ∈ argmin

u0
Lðu0; futþ1

r g; fΛt
rgÞ; End on t: ð20Þ

This type of algorithm has recently become the subject of
intensive development and study, in particular, for image pro-
cessing. These algorithms, sharing many common ideas and
features, appear under different names, such as split Bregman
iterations [29], iterative shrinkage-thresholding algorithms
[30], alternating direction method of multipliers [31], and
majorization–minimization algorithms [32].

C. Proposed Algorithm
In order to derive the reconstruction algorithm, we minimize
L on furg and u0. Details of the corresponding calculations
are given in Appendix A. These minimizations lead to the
following iterative AL algorithms:
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AL Algorithm 1: Set t ¼ 0 ðinitializationÞ; u00; Λ0
r ;

2: Repeat for t ¼ 0; 1; :::;

3: Repeat for r ¼ 1; :::K;

4: utþ1=2
r ¼ Ar · ut0;

5: utþ1
r ½k� ¼ Gðor ½k�; utþ1=2

r ½k�;Λt
r ½k�Þ;

6: Λtþ1
r ¼ Λt

r þ αr · ðutþ1
r − utþ1=2

r Þ;
7: End on r;

8: utþ1
0 ¼

�XK
r¼1

1

γrσ2r
AH

r Ar þ μ · In×n
�

−1

×
XK
r¼1

1
γrσ2r

AH
r ðutþ1

r þΛt
rÞ;

9: End on t: ð21Þ

The initialization for t ¼ 0 concerns the object plane distri-
bution u00 and Lagrange multipliers Λ0

r . Step 4 returns utþ1=2
r

according to the forward propagation of the object wave field
ut0 to the sensor planes. Step 5 returns the updates utþ1

r of the
wave field distributions at the sensor planes by fitting utþ1=2

r

with the observation or . The operator defining this update is
denoted in the algorithm as G. The formulas defining the cor-
responding calculations in Eqs. (A5) and (A6) are given in
Appendix A. Step 6 returns the updated Lagrange multipliers.
Step 8 gives the update for the object wave field calculated
from the found estimates utþ1

r and the LagrangemultipliersΛt
r .

Note that Step 8 has a structure that is typical for the par-
allel algorithms from Subsection 1.A. The object wave field
reconstruction is calculated using the summation of the object
estimates obtained using the backward propagation of utþ1

r .
The backward propagation operator is of the form B−1AH

r ,
B ¼ P

K
r¼1 A

H
r Ar þ μ · In×n. In Step 8, the multiple estimates

of u0 obtained from the multiple sensor planes are aggregated
into the final update for the object reconstruction. This aggre-
gation formula is similar to Eq. (9).

The proposed algorithm is derived and introduced using the
vector-matrix notation. The computational complexity of the
algorithm in this form is reasonable only for images that are
small, because the matricesAr are of the size n × n, n ¼ N ·M .
In order to make the algorithm applicable for large size
images, we implement the algorithm using fast Fourier trans-
form (FFT) calculations.

First, note that Eq. (2) is a matrix representation for the
convolution of the object distribution u0 (with the finite rec-
tangular support N ×M) and the shift-invariant kernel of the
wave field propagation operator (with infinite support). For
the exact calculations of the convolution in the FFT domain,
we need to use the double size version of the propagation
kernels, with the support 2N × 2M , and the object wave field
~u0 zero-padded to the same size 2N × 2M (see [9]).

Further, in the FFT double size manipulations, the variable
~ur is calculated for the double size support 2N × 2M , where
the central part of this support corresponds to the sensor
of the original size N ×M . In this way, at the sensor planes,
we have additional wave field estimates for the areas outer
to the sensor supports. We use these extra estimates at the
sensor planes to improve the performance of the algorithm.

Details concerning this sort of fruitful use of the extra es-
timates appearing due to double size FFT calculations can be

seen in [11], where they are exploited in the inverse wave field
reconstruction based on F-DDT propagation modeling.

3. SIMULATION EXPERIMENTS
The main goal of the numerical experiments is to analyze the
accuracy of wave field reconstruction and to study the perfor-
mance of the algorithm for different types of object distribu-
tions, different parameters fK; zf ;Δzg of the optical setup,
and different parameters fγr; αr; μg of the algorithm.

We consider the complex-valued object distribution in the
form u0½k� ¼ ju0½k�j · expðj · ϕ0½k�Þ. For the object with ampli-
tude modulation (AM), ϕ0½k�≡ 0, ju0½k�j ¼ w½k�. For the object
with phase modulation (PM), ju0½k�j≡ 1, ϕ0½k� ¼ πðw½k� − 1

2Þ.
Here w½k� is a spatially varying test image. It is assumed that
0:1 ≤ w½k� ≤ 1.

The following set of square (N × N) test images is used:
gray-scale lena (256 × 256), binary logo (256 × 256), chess-
board (128 × 128), and the gray-scale smooth Mexican Hat
(200 × 200). The last test image is defined by the formula
w½k� ¼ − 4

3
ffiffiπp · ðjj k

40 jj2 − 2Þ · expð− 1
2 jj k

40 jj2Þ and is calculated
on the 2D integer grid −100 ≤ ðk1; k2Þ ≤ 99. Thus w½k� is nor-
malized in such a way that 0:1 ≤ w½k� ≤ 1.

The accuracy of the wave field reconstruction is character-
ized by the root-mean-square error (RMSE) criterion calcu-
lated for amplitude and phase of the wave field.

The phase from the intensity measurements can be recon-
structed up to an arbitrary constant only. In order to eliminate
this ambiguity, RMSE for the object phase is calculated for
ϕ0 − ϕ̂0 −meanðϕ0 − ϕ̂0Þ, where ϕ̂0 is an estimate of the phase,
and meanðϕ0 − ϕ̂0Þ stands for the mean value of the estimation
error calculated over a test image.

The pixelated models for the object and sensor planes have
square pixels Δ ×Δ, Δ ¼ 6:7 μm with 100% fill factors. The
wavelength Λ ¼ 532 nm corresponding to an Nd:YAG green
laser. The “in-focus” distance for the considered lensless sce-
nario is calculated as zf ¼ N ·Δ2=Λ (see [33]). The distance
from the object plane to the first sensor plane z1 is expressed
through this “in-focus” distance as z1 ¼ d · zf , where the para-
meter d is varying in the interval ½0:5; 3�. The number of
measurement planes K takes values from the interval [3,10].

If it is not specified, we use d ¼ 2, K ¼ 5, and Δz ¼ 2mm.
The observations or are generated from u0 using the double

size F-DDT. The observation fields generated in this way are
precise for pixelated sensor and object distributions [11]. This
F-DDT is exploited also in the AL algorithm for the forward
propagation operators Ar [Step 4 and Step 8 in Eq. (21)].

The MATLAB code used for the simulation experiments,
the results, and the discussions are available on the website
[34].

A. Parameters of the AL Algorithm
The performance of the algorithm depends essentially on the
parameters of the algorithm. In this subsection, we present the
values of these parameters, which are acceptable for various
scenarios and for the considered test images. For simplicity,
we assume that αr ¼ α, γr ¼ γ, σ2r ¼ σ2 for all r. Then, Step 8 of
the algorithm in Eq. (21) can be rewritten as

utþ1
0 ¼

�XK
r¼1

AH
r Ar þ ~μγ · In×n

�
−1 XK

r¼1

AH
r ðutþ1

r þΛt
rÞ; ð22Þ
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where the regularization parameter μ is changed for ~μ ¼ μ · σ2.
Thus, we are looking for the best choice of the triplet of the AL
parameters fγ; α; ~μg that works for the considered test images
and the various parameters of the optical setup.

The value of the pixel size Δ is crucial for the algorithm’s
performance. The optimal values of ~μ and γ may differ in
several times depending onΔ, especially for PM. For a smaller
Δ, the optimal ~μ is larger and the optimal γ is smaller.

The results on optimization of the algorithm parameters
can be summarized as follows:

a. the recommended penalty coefficient γ ¼ 10;
b. the step-size parameter for the Lagrange multipliers

α ¼ 1; and
c. the regularization parameter ~μ is about 10 times larger

for PM than for AM. For noiseless data (σ ¼ 0), we use ~μ ¼ 5 ·
10−4=10−3 for AM/PM, respectively. For noisy data, provided
that the level of the noise is low (σ ∈ ½0:01; 0:05�), we use
~μ ¼ 5 · 10−3=10−2 for AM/PM, respectively. Larger values of the
regularization parameter ~μ are recommended for larger d and
for larger K .

For each experiment, the reconstruction accuracy can be
improved by modifying fγ; α; ~μg. More comments concerning
the parameters of the algorithm are presented in [34].

B. Quality and Accuracy of Imaging
Qualitative and quantitative performance of the algorithm is
considered in this subsection for noiseless (σ ¼ 0) and noisy
data (σ ¼ 0:05) with the parameters fγ; α; ~μg fixed as it is dis-
cussed above.

In Fig. 2, we demonstrate the algorithm performance de-
pending on the number of measurement planes K and on dis-
tances z1. The amplitude reconstructions for the AM object
with the binary test image logo are shown. The columns in
Fig. 2 correspond to different numbers of the observation
planes (from the left to the right) K ¼ 3; 5; 10:. The rows
are given for different z1 varying from 0:5 · zf to 3 · zf (from
top to bottom), zf ¼ 21:6mm. The distances between the
sensor planes are fixed, Δz ¼ 2mm.

It can be seen that the larger K leads to a monotonically
better quality of the wave field reconstruction for different
z1 smaller or larger than zf .

The relative improvement is especially valuable for small K
(about 30% in RMSE values for two additional planes from
K ¼ 3 to K ¼ 5) and not so essential for larger K (from K ¼
5 to K ¼ 10).

It is seen that, for z1 ¼ 0:5 · zf , a very good result is ob-
tained already for K ¼ 5 (the second image in the top row,
RMSEðju0jÞ ¼ 0:0106). Here z5 ≈ 18:8mm < zf . The accuracy
and imaging for K ¼ 10 are slightly better (the third image in
the top row, RMSEðju0jÞ ¼ 0:0101), even though some mea-
surement planes are far from the focus distance, e.g.,
z7 ≈ 22:8mm > zf . For other rows, larger K give more notice-
able improvements in imaging (in these cases, zr ≥ zf for all r).
The corresponding RMSE values are presented in Table 1.

In Fig. 3, we consider the accuracy of the phase reconstruc-
tion depending on the distance between the sensor planesΔz.
These results are presented for differentK , image sizesN , and
distances z1. The curves are RMSE values calculated for the
PM object with the binary test image chessboard, σ ¼ 0:05.

All the RMSE curves go rapidly down, achieve minimum
values corresponding to optimization on Δz, and then grow
initially slowly and then faster forΔz > 0:5 · zf . The existence
of the optimal Δz is well seen. It can be noticed from compar-
ison of the curves that a larger number of the observation
planes K , a larger image size N , and a smaller distance z1 lead
to a proportional decrease of the optimal value of Δz. How-
ever, the RMSE curves are quite irregular and multimodal, and
it is not clear how to select the best Δz. Note that, despite a
clear decrease of RMSE for larger Δz, the influence of this
parameter on the quality of imaging is not essential.

There are interesting connections between the accuracy of
the AL algorithm and the condition number of the operatorP

K
r¼1 A

H
r Ar in Eq. (22). Smaller (larger) values of this condi-

tion number result in a higher (lower) accuracy of the

Fig. 2. Reconstructions of the amplitude for the AM object distribu-
tion with different numbers of sensor planes K and distances z1 be-
tween the object and the first sensor plane. Logo test-image, noiseless
data σ ¼ 0, ~μ ¼ 5 · 10−3.

Table 1. Quantitative Comparison of the

Amplitude Reconstruction, RMSE�ju0j� for the

Test, Presented in Fig. 2

d

K

3 5 10

0.5 0.041 0.0106 0.0101

1 0.0691 0.0371 0.0323
1.5 0.0882 0.0597 0.0512
2 0.1159 0.072 0.0628
3 0.1478 0.1148 0.091
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reconstruction. The condition number can be used as a criter-
ion for selection of the parameters fK; zf ;Δzg of the optical
setup. Details of this topic are beyond the scope of this paper.
Some analysis and comments can be seen in [34].

C. Comparison of AL with SBMIR
In this subsection, we compare of the performance and the
accuracies of the proposed AL algorithm in Eq. (21) with re-
spect to the SBMIR algorithm in Eq. (10).

First, in Fig. 4, we present the reconstruction of the object
amplitude and phase for the AM object with the gray-scale
lena as the test image w. These reconstructions are done
for the noiseless case of σ ¼ 0. The first column is obtained by
AL: Fig. 4(a) is the reconstruction of amplitude, RMSEðju0jÞ ¼
0:041, and Fig. 4(c) is the reconstruction of phase,
RMSEðϕ0Þ ¼ 0:091. The second column images are obtained
by SBMIR: Fig. 4(b) is for the amplitude reconstruction,

RMSEðju0jÞ ¼ 0:08, and Fig. 4(d) is for the phase reconstruc-
tion, RMSEðϕ0Þ ¼ 0:28.

The accuracy of the AL algorithm for both the amplitude
and phase reconstructions is approximately twice better than
that for the SBMIR algorithm. The advantage of the AL algo-
rithm for the amplitude reconstruction is obvious because the
SBMIR reconstruction of the amplitude is corrupted by arti-
facts parallel to the image borders. There are no such artifacts
in the AL imaging.

The convergence rates of the AL and SBMIR algorithms for
this experiment are shown in Fig. 5. The proposed AL algo-
rithm demonstrates not only a significantly better reconstruc-
tion accuracy but also a good convergence rate.

In Fig. 6 we compare the wave field reconstructions for the
PM object distribution with the binary test image chessboard
used for the phase modulation. The results are shown for the
noisy data, σ ¼ 0:05. The left column of Fig. 6 is obtained by
AL: Fig. 6(a) shows the amplitude reconstruction,
RMSEðju0jÞ ¼ 0:23, and Fig. 6(c) shows the phase reconstruc-
tion, RMSEðϕ0Þ ¼ 0:26. The right column in Fig. 6 is obtained
by SBMIR: Fig. 6(b) is for the amplitude reconstruction,
RMSEðju0jÞ ¼ 0:35, and Fig. 6(d) is for the phase reconstruc-
tion, RMSEðϕ0Þ ¼ 0:58.

The AL algorithm demonstrates clear and sharp phase
imaging, while the SBMIR phase reconstruction is blurred

Fig. 4. Comparison of the amplitude and phase reconstructions ob-
tained by AL (left column) and SBMIR (right column) algorithms. The
top row demonstrates the amplitude reconstructions (a) by AL,
RMSEðju0jÞ ¼ 0:041, and (b) by SBMIR, RMSEðju0jÞ ¼ 0:08. The bot-
tom row shows the phase reconstructions, obtained (c) by AL,
RMSEðϕ0Þ ¼ 0:091, and (d) by SBMIR, RMSEðϕ0Þ ¼ 0:28. AM object,
lena test image, K ¼ 5, noiseless data σ ¼ 0.

Fig. 5. (Color online) Convergence rates of the AL and SBMIR
algorithms for the test presented in Fig. 4.

Fig. 6. Comparison of the amplitude and phase reconstructions ob-
tained by AL (left column) and SBMIR (right column) algorithms. The
top row demonstrates the amplitude reconstructions (a) by AL,
RMSEðju0jÞ ¼ 0:23, and (b) by SBMIR, RMSEðju0jÞ ¼ 0:35. The bot-
tom row illustrates the phase reconstructions, obtained (c) by AL,
RMSEðϕ0Þ ¼ 0:26, and (d) by SBMIR, RMSEðϕ0Þ ¼ 0:58. PM object,
chessboard test image, K ¼ 5, noisy data σ ¼ 0:05.

Fig. 3. (Color online) Accuracy of the phase reconstruction with re-
spect to the distance between measurement planes Δz. PM object,
chessboard test image, noisy data σ ¼ 0:05.
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and significantly destroyed. The RMSE values for the ampli-
tude ju0j and phase ϕ0 reconstructions are large because of
the large errors on the borders of the blocks of the chess-
board. Overall, the reconstruction accuracy both for ampli-
tude and for phase is much better for the AL algorithm.

The convergence rates of the AL and SBMIR algorithms
for the phase reconstruction are compared in Fig. 7. After
the first 20 iterations, where the accuracies of the algorithms
are equivalent, the convergence of SBMIR becomes slow and,
after 100 iterations, AL shows a significant advantage in the
achieved RMSE values.

In contrast to the discontinuous and nonsmooth distribu-
tions (lena, chessboard, and logo test images considered
above), the test image Mexican Hat is smooth. It is used
for the phase modulation of the object distribution. In Fig. 8
we show the cross sections of the true phase and its normal-
ized reconstructions, obtained by the AL and SBMIR algo-
rithms. The advantage of the AL algorithm is obvious. The
almost complete bell and the hollow of the Mexican Hat
are reconstructed by AL (solid curve in Fig. 8). Larger errors
appear on the borders in the AL and SBMIR reconstructions.

The convergence rates of the AL and SBMIR algorithms for
this PM experiment are illustrated in Fig. 9. The AL algorithm
converges much faster than SBMIR and gives essentially bet-
ter RMSE values.

D. Computational Complexity
In Table 2, we show the average computational time (in
seconds) for 100 iteration of the AL algorithm depending
on the number of the measurement planes K and the image
size defined by the parameter N . In our experiments, the
image size in pixels is n ¼ N2.

These numbers are obtained by Monte Carlo simulations
with averaging over 50 experiments. The computer used for
experiments is Intel Core 2Duo E8400 at 3GHz; RAM, 4GB;
Windows Xp SP3; MATLAB 7.9.0 (R2009b). Memory require-
ments depend mainly on N and K .

The averaged computational times required for calculation
of fArgKr¼1 in the algorithm and more comments about the
computational complexity are presented on our web
page [34].

4. CONCLUSION
In this work, we present a novel variational formulation for
the phase-retrieval problem. Being the maximum likelihood
style, this setting takes into consideration the Gaussian noise
distribution. Based on the AL technique, we have developed
the iterative constrained optimization algorithm for the ampli-
tude and phase reconstruction assuming that the object
distribution is complex valued.

Fig. 7. (Color online) Convergence rates of the AL and SBMIR
algorithms for the test presented in Fig. 6.

Fig. 8. (Color online) Cross sections of the true phase (dotted curve)
and phase reconstructions obtained for the Mexican Hat test image.
The solid curve corresponds to AL, RMSEðϕ0Þ ¼ 0:187, and the
dashed curve corresponds to SBMIR, RMSEðϕ0Þ ¼ 0:511. PM object,
1000 iterations, K ¼ 5, noisy data σ ¼ 0:05.

Fig. 9. (Color online) Convergence rates of the AL and SBMIR
algorithms for the phase reconstruction (Mexican Hat) of the test
presented in Fig. 8.

Table 2. Computational Time (in Seconds) for 100 Iterations of the AL Algorithm

N

K

2 3 5 7 10 15

128 10.4 15.6 24.8 27 38.2 56.3
256 46.2 55.6 88.1 121.7 172.9 257.6
512 180.6 253.9 398.5 556.9 787.5 1176.2
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The algorithm demonstrates a good convergence rate, and
good accuracy and imaging for phase and amplitude of the
wave field reconstruction both for noiseless and noisy obser-
vation data.

APPENDIX A: DERIVATION OF THE AL
ALGORITHM
Here we provide some details of minimization of L on u0 on
furg defining the AL algorithm in Eq. (21).

1. Optimization on ur
Let us rewrite the criterion of Eq. (15) into the form

Lðu0;furg;fΛrgÞ ¼
XK
r¼1

1
σ2r

�
1
2
jjor − jur j2jj2 þ

1
γr
jjur −Ar · u0jj2

þ 1
γr

�
ΛH

r ður −Ar · u0Þ þ ður −Ar · u0ÞHΛr

��
þ μjju0jj22: ðA1Þ

The Lagrangian Eq. (A1) is additive with respect to the vec-
tors ur and their components. Thus, the minimization on ur
can be produced in the elementwise manner. The derivative
∇u�r ½k�L ¼ 0 gives the minimum condition for ur ½k� as

∂L
∂u�r ½k�

¼ 1
σ2r

ðjur ½k�j2 − or ½k�Þ · ur ½k�

þ 1
γrσ2r

ður ½k� − ðAr · u0Þ½k� þΛr½k�Þ ¼ 0: ðA2Þ

It follows that

ur ½k� ¼
ðAr · u0Þ½k� −Λr ½k�

γrðjur ½k�j2 − or ½k�Þ þ 1
¼ ηr ½k�

κr ½k�
: ðA3Þ

Taking the module from the left and right sides of Eq. (A3),
we arrive at the cubic equation with respect to jur ½k�j:

jur ½k�j3 þ jur ½k�j ·
�
1
γr

− or ½k�
�
− sgnðκr ½k�Þ ·

jηr ½k�j
γr

¼ 0: ðA4Þ

In reality, we have two different cubic equations: corre-
sponding to sgnðκr ½k�Þ ¼ 1 and to sgnðκr½k�Þ ¼ −1. Each of
these Eqs. (A4) may have a single or three real solutions.
We are looking for a nonnegative real root denoted as
j~ur ½k�j. It can be seen that such j~ur ½k�j always exists.

If this root is found, the corresponding complex-valued es-
timate of the wave field at the sensor plane ûr ½k� is calculated
according to Eq. (A3) as

ûr ½k� ¼
ðAr · u0Þ½k� −Λr ½k�

γkðj~ur ½k�j2 − or ½k�Þ þ 1
: ðA5Þ

The nonnegative solution j~ur ½k�j can be not unique. Then
the procedure becomes more complex because these solu-
tions should be analyzed. As a proper solution, we selected
ûr ½k� [Eq. (A5)] giving the minimum value to the correspond-
ing rth summand of L.

We denote the nonlinear algorithm giving ûr ½k� defined by
Eq. (A5) and including the mentioned analysis of the multiple
nonnegative solutions as

ûr ½k� ¼ Gðor ½k�; ur ½k�;Λr ½k�Þ; ðA6Þ

where ur ½k� ¼ ðAr · u0Þ½k�.
It defines Step 5 of the algorithm in Eq. (21).

2. Optimization on u0
Minimization on a complex-valued u0 ¼ Refu0g þ iImfu0g
(u0 ¼ a0 þ ib0) means minimization on both the real a0 and
imaginary b0 parts of u0. The necessary minimum conditions
would have the standard form ∂L=∂a0 ¼ 0 and ∂L=∂b0 ¼ 0.
However, it is more convenient (and the resulting equations
are more compact) if one replaces these real and imaginary
parts by the complex-valued u0 and u�0, where the � super-
script denotes the complex conjugate. Then, the necessary
minimum conditions have the form ∂L=∂u�0 ¼ 0 or, equiva-
lently, ∂L=∂u0 ¼ 0. In these derivative calculations, the vari-
ables u0 and u�0 are treated as independent. Note also that
the differentiation of a scalar by a vector results in a vector
of derivatives: ∂L=∂u0 ¼ ½∂L=∂u0½1�;…; ∂L=∂u0½n��T , provided
that u0 ¼ ½u0½1�; :::; u0½n��T . In particular, for jju0jj22 ¼ uT0 u

�
0, we

have ∂jju0jj22=∂u�0 ¼ u0 and ∂jju0jj22=∂u0 ¼ u�0.
The minimum condition for Eq. (A1) in the form ∇u�0

L ¼ 0
gives the solution in the form

û0 ¼
�XK

r¼1

1

γrσ2r
AH

r Ar þ μ · In×n
�

−1 XK
r¼1

1

γrσ2r
AH

r ður þΛrÞ:

ðA7Þ

It defines Step 8 of the AL algorithm.

3. Optimization on Λr

The update of the Lagrangian multipliers in the gradient direc-
tion (∇Λ�

r
L ¼ ur − Ar · u0) is defined by the equation

Λtþ1
r ¼ Λt

r þ αr · ðutþ1
r − Ar · ut0Þ: ðA8Þ

It defines Step 6 of the algorithm.
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