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Abstract. The phase retrieval is formulated as an inverse problem, where the forward propagation is defined by Discrete 

Diffraction Transform (DDT) [1], [2]. This propagation model is precise and aliasing free for pixelwise invariant 

(pixelated) wave field distributions in the sensor and object planes. Because of finite size of sensors DDT can be ill-

conditioned and the regularization is an important component of the inverse. The proposed algorithm is designed for 

multiple plane observations and can be treated as a generalization of the Gerchberg-Saxton iterative algorithm. The 

proposed algorithm is studied by numerical experiments produced for phase and amplitude modulated object 

distributions. Comparison versus the conventional forward propagation models such as the angular spectrum 

decomposition and the convolutional model used in the algorithm of the same structure shows a clear advantage of DDT 

enabling better accuracy and better imaging. 
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INTRODUCTION 

The phase of radiation scattered from an object carries important information about an object surface and its 

properties. Phase measurements are exploited in many fields in materials and biological sciences. Because only the 

magnitude (intensity) of radiation can be measured directly the problem of phase reconstruction from intensity 

measurements appears. Solutions fall into two large categories: interferometric (holographic) with a reference beam 

and non-interferometric (phase-retrieval), where a reference beam is not required. The latter solution is substantially 

simpler and, what is important, much more robust with respect to disturbances. 

The method proposed by Gerchberg and Saxton [3] is the first popular beam-propagation-based phase 

reconstruction method. The idea is that the phases missing in observations are recovered iteratively applying the 

magnitude constraints in object and sensor planes. This technique has been studied, modified and developed in a 

flow of publications (e.g. [4], [5], [6]). In this paper we consider a single and multiple plane observation scenarios 

where the magnitudes of the wave field are measured in the planes parallel to the object plane. It is assumed that the 

wave field is generated by radiation from the object plane. The reconstruction of the phases missed in observations is 

produced through the object plane distribution considered as the only unknown variable. 

The proposed iterative algorithm is a generalization of the Gerchberg and Saxton algorithm for multiple plane 

observations and inverse imaging techniques. In this work we are restricted to numerical experiments and the 

forward wave filed propagation modeling based on the discrete diffraction transform (DDT) developed in two 

complementary forms: in the frequency (Fourier) domain (F-DDT) [1] and in the spatial domain as the matrix 

discrete diffraction transform (M-DDT) [2]. By its very nature this transform enables the perfect forward 

propagation modeling for the pixelated wave field. The "pixelated" assumes that the wave field distributions are 

pixelwise invariant in the object and sensor planes. This assumption is natural for all sorts of digital sensors and used 

as a pixelwise approximation for the object plane. In numerical modeling we always deal with the pixelated objects 

and in this way we can claim that at least for numerical experiment this wave field modeling is accurate. 

The contribution of this paper concerns a demonstration that the developed algorithm enables a better accuracy in 

comparison with the standard ones and better visualization. In this comparison we study as valuable alternatives the 

algorithms using the angular spectrum decomposition (ASD) and discrete convolution (DC) as models for the 



forward propagation modeling. We consider the reconstruction of the object wave fields with amplitude or phase 

modulations. It is shown that the spatially adaptive regularization used in the inverse imaging results in the further 

improvement of the algorithm performance. 

 

 
FIGURE 1.  Multiple plane phase (wave field) reconstruction: u0 is an object plane, uzl

 are measurement planes, l=1,…,L. 

 

OBSERVATION MODELS 

Let u0(x) and uzl
(x), x R

2
, l=1,...,L, denote the complex-valued wave field distributions in the object and sensor 

planes respectively. zl indicates a distance between the parallel object and l-th planes, and L is a number of the 

observation planes (sensors) (see Fig. 1). The pixelated modeling means that the continuous arguments x are 

replaced by integer ones with the following replacements of the continuous distributions by their discrete models: 

u0(x) → u0[k], uzl
(x) → uzl

[k], k Z
2
. Thus, the argument k is a two dimensional vector with integer components, i.e. 

belongs to the set Z
2
. For a finite size square image it means that k=(k₁,k₂), 0≤k₁,k₂≤N-1. In DDT the values u0[k], 

uzl
[k] are defined as the mean values of the corresponding continuous variables with the means calculated over the 

square or rectangular pixels. The link between these u0[k] and uzl
[k] is accurate for the pixelwise object distribution 

and the discrete sensor. In the frequency domain this link can be given in the form [1] 
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where Ũ0[f] and Ũzl
[f] are calculated as the fast Fourier transform (FFT) of ũ0[k] and ũzl

[k] , f Z
2
 and the transfer 

function Ãzl,z0
[f] is FFT of the pixelwise averaged values of the kernel of the Rayleigh-Sommerfeld integral. The 

calculation of Ãzl,z0
[f] in [1] is produced for the Fresnel approximation of this kernel. 

In what follows ũ0[k] and ũzl
[k] are extended double size versions of u0[k] and uzl

[k] zero padded to the double 

size of the images, and all frequency domain operations are produced for the double size images. There are two 

reasons for these double size operations. First, we need this double size in order to the DDT forward propagation be 

accurate. uzl
[k] is calculated from the double size inverse FFT ( ]}[

~
{][~ 1 fUFFTku

ll zz
) by taking the middle part 

of this double size image. Remind that these sort of double size calculations are typical for accurate convolutional 

techniques (e.g. [7]). Second, the extra area of images appeared due to zero padding is essential for the recursive 

inverse performed in the frequency domain [1]. Concerning f in (1) note, that it is a vector f=(f₁,f₂), -N≤f₁,f₂≤N-1. 

The integer 2D regular grid for f is circular-shifted in such a way that the origin point f₁=0, f₂=0 is in the left upper 

corner of the grid. 

The frequency models similar to (1) can be used for all forward propagation models. Here we mention only two 

of them used in our numerical experiments. The transfer function for ASD is calculated analytically as follows [8]: 
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The transfer function for the discrete convolutional (DC) model is calculated as [7]: 
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In these formulas λ is the wavelength, and Δ is a parameter of the pixel size (we assume that the pixels are square 

Δ×Δ). The transfer functions (2)-(3) are exploited for calculations of the spectrum in the sensor planes based on the 

formula (1). These calculations can be produced for double and single size images. 
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PHASE RETRIEVAL ALGORITHM 

Let us assume for a moment that the complex-valued uzl
 are known. Then the reconstruction of u0 can be 

produced in the frequency domain according to the following optimization formulation: 
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where the Euclidean norm means ||Ũ0[f]||2
2
=Σf|Ũ0[f]|

2
  and α² is a regularization parameter. 

The routine calculations give the estimate of Ũ0[f] in the form 
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where '*' stands for a complex-conjugate variable. The criterion in (4) corresponds to the standard Tikhonov's 

quadratic regularization of the ill-conditioned inverse problems [9]. We will use the formula (5) in order to derive 

the algorithm for the case, when only magnitude data are available instead of the complex valued one.   

Let the observations in the sensor planes be given as 
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where εl[k] are measurement noises. 

Substitute these noisy magnitude observations in (5) instead of uzl
 , then we arrive to the following expressions: 
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Here I[k] is the indicator of the image area, i.e. I[k]=1 for the image area and equal to 0 otherwise. Then the 

formula õzl
 [k]·I[k]+|ũzl

 [k]| · (1-I[k]) replaces the magnitude of uzl
 [k] by the observations ozl

[k] in the middle part 

of the double size image and preserves the magnitudes of ũzl
[k] calculated for the outside of this middle part. The 

formulas in (7) are equations with respect to unknown u0[k]. These equations are nonlinear because the phases 
l

~
in 

the observation planes depend on u0[k]. 

The following iterative procedure is natural for these equations and defines the proposed iterative algorithm: 
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We name this algorithm Multiple Plane Frequency DDT (MF-DDT). This iterative procedure can be used also 

with the ASD and DC frequency domain models (transfer functions (2) and (3)). The calculations become simpler 

because in this case |Ãzl,z0
[f]|

2
 = 1, Ãzl,z0

*
[f] = Ã-zl,z0

[f], and we do not need regularization. We will refer to the 

algorithms generated from (8) as to the ASD or DC algorithms depending on which forward propagation model is 

used. 

It is not difficult to realize that the algorithm (8) can be treated as a generalization of the Gerchberg-Saxton 

algorithm for multiple observation planes and the DDT forward propagation requiring the regularized inverse for the 

backward propagation. 

The single-beam multiple-intensity phase reconstruction (SBMIR) technique using only the intensity 

measurements of a volume speckle field and wave propagation equation has been proposed and studied in [10], [11]. 

The phase distributions for the observation planes are reconstructed successively in circular iterations from one 

observation plane to the following one starting from the first observation plane. The algorithm (8) is different from 

SBMIR in principle because the observations from all planes are processed simultaneously with estimation of u0 as 

the only unknown variable. The simulation confirms the advantage of this parallel processing of all observations. 

A further development of the proposed approach is produced by using a varying spatially adaptive regularization 

instead of the simple Tikhonov`s one. It is shown in [12] that this sort of regularization can be implemented as 



spatially adaptive filtering. In the developed modification of the algorithm (8) the phase and the magnitude of each 

iterative estimate ũ0
(t)

[k] are subjects of the special filtering. For this filtering we use the powerful adaptive BM3D 

algorithm [13]. Simulation demonstrates an essential improvement of these phase and magnitude estimates visually 

and numerically. 

 

NUMERICAL EXPERIMENTS 

We tested our algorithm in multiple experiments with amplitude (AM) or phase (PM) modulated object 

distributions. The images are square N×N, N =256 with square pixels Δ×Δ, Δ =6.7μm, the wavelength λ =632.8nm. 

The "in-focus" distance is calculated as zf = NΔ²/λ =18.16mm. It is assumed that the additive noise in (6) is zero-

mean Gaussian with σ=0.01. The number of measurement planes is varying from L=1 to L=20. The number of 

iterations is fixed to 100. As an image used for modulation of the object wave field distribution we use the standard 

test-image lena. The distances between the measurement planes are constant and equal to Δz=0.5mm. z1 is the 

distance from the object to the first measurement plane (see Fig. 1). 

It is appeared that the DC algorithm fails for z1< zf due to strong aliasing effects and nearly equivalent to the ASD 

algorithm for z1≥ zf. In what follows we show the results only for MF-DDT and ASD algorithm and drop the results 

for the DC algorithm. 

 

 
FIGURE 2. The accuracy (RMSE) of the object phase reconstruction by the MF-DDT and ASD algorithms versus the distance z1. 

This distance is given as a ratio to the "in-focus" distance zf.. 

 

The accuracy of the phase reconstructions in the object plane is shown in Fig. 2 for different distances z1 . The 

accuracy of MF-DDT is always better than that for the ASD algorithm with the relative improvement in RMSE 

values about 30÷50%. The adaptive regularization embedded in the MF-DDT algorithm (BM3D filtering) improves 

the accuracy and visual perception of images. 

 

 
FIGURE 3. The phase reconstruction by the MF-DDT algorithm (z1=1.5·zf): (a) L=1, PSNR=15.9 dB; (b) L=2, PSNR=16.3 dB; 

(c) L=10, PSNR=16.8 dB. 

 

 



 
FIGURE 4. The phase reconstruction by the ASD algorithm (z1=1.5·zf): (a) L=1, PSNR=14.6dB; (b) L=2, PSNR=15.5dB; (c) 

L=10, PSNR=16.3dB. 

 

 
FIGURE 5. The filtering effects in the phase reconstruction by the MF-DDT algorithm (z1=1.5·zf): (a) L=1, PSNR=15.9dB (no 

filtering); (b) L=1, PSNR=16.4dB (with filtering); (c) L=10, PSNR=16.8dB (no filtering); (d) L=10,PSNR=17dB (with filtering). 

 

Examples of images obtained from the phase reconstruction by MF-DDT and ASD algorithms are presented in 

Fig. 3 and Fig. 4 respectively. The image quality is characterized by PSNR values calculated in dB as               

20log10 (max|u₀|/RMSE). For the MF-DDT algorithm the enhancement in the image quality is quite clear visually 

and numerically with PSNR improvement equal to about 0.4 dB for L=2 as compared with L=1. L=10 gives a 

further improvement in PSNR of about 0.5 dB as compared with L=2. For the ASD algorithm the improvements in 

PSNR values even more essential for larger values of L as it can be seen in Fig. 4. 

The filtering (adaptive regularization) in the MF-DDT algorithm is valuable for imaging as it is demonstrated in 

Fig. 5 for L=1 and L=10. 

A larger number of the observation planes L results in a better accuracy for the MF-DDT algorithm, and this 

improvement is very valuable for L=2. Higher values of L monotonically improve the accuracy but not so 

efficiently. The dependences of RMSE on the number of the observation planes L for MF-DDT algorithm with 

filtering and without filtering are shown in Fig. 6a. All results in this figure are given for the observations obtained 

by the DDT forward propagation modeling. For comparison we show also the accuracy achieved by the ASD 

algorithm. We can see that the accuracy of the MF-DDT algorithm is much better for all numbers of the observation 

planes from L=1 up to L=20. This difference in the performance of the algorithms is defined by the fact that the MF-

DDT algorithm is a more appropriate fit (than the ASD algorithm) to the forward DDT propagation model used to 

generate the observations. In this way MF-DDT is able to give better results. The RMSE curves in Fig. 6a show that 

this potential is well realized by the MF-DDT algorithm. 

 

 
FIGURE 6. The object magnitude reconstruction, RMSE accuracy of the MF-DDT, ASD and SBMIR algorithms versus the 

number of planes L, z1=1.5·zf . Observed data are generated according to the forward propagation models: (a) DDT, (b) ASD. 



The only difference between the SBMIR and ASD algorithms is in their structure: plane-to-plane phase 

reconstruction in SBMIR and parallel plane processing in the ASD as it is discussed in Section "Phase retrieval 

algorithm". In Fig.6b we produce a comparison of these algorithms. This comparison is done for observations 

generated by the ASD forward propagation model. Remind that the wave field propagation in the SBMIR algorithm 

is implemented according to the considered ASD model [11]. In this case the wave field propagation used in the both 

algorithms accurately corresponds to the observations generated by the ASD model. Thus, we obtain the scenario for 

an accurate comparison of two different ideas: the parallel versus successive plane-by-plane data processing. The 

RMSE curves in Fig.6b show uniformly smaller RMSE values for the ASD algorithm. We consider it as an evidence 

in favor of the parallel processing with respect to the successive one. For the data generated according to the forward 

DDT propagation model the SBMIR algorithm demonstrates the performance which is similar but a bit worse than 

that shown in Fig.6a for the ASD algorithm. 

Once more note that for the pixelated object and sensor planes the forward DDT propagation modeling is 

accurate. It is the main reason behind evaluation of the algorithms on the data generated according to this model. 

 

CONCLUSIONS 

In this work we present a multiple plane phase retrieval algorithm based on simultaneous (parallel) data 

processing and DDT as the forward propagation model. Both things are essential to explain the advance performance 

of the proposed algorithm. Multiple experiments have been produced in order to study the algorithm behavior for 

different test images and for reconstruction of phase/magnitude/complex-valued object distributions. Only a small 

part of these results are shown in the paper. Our further work concerns the adaptive selection of the regularization 

parameter as well as a tuning of the adaptive filtering, in particular for noisy data. We wish to note that the 

developed approach is quite flexible. In particular, it can be applied for wave field reconstruction from multiple 

wavelength data. 
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